

Carbon Sequestration And Greenhouse Gas Emissions Associated

With Short-Rotation Woody Biomass Production In The Upper Great Lakes Region

David Rothstein¹ Marin Palmer², Jodi Forrester², Christopher Johnson² David Mladenoff² and Anthony D'Amato³ ¹Department of Forestry, Michigan State University, East Lansing, MI ²Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI.

³Dept. of Forest Resources, University of Minnesota

United States National Institute of Food and Department of Agriculture Agriculture

Project Objectives

(1) develop predictive relationships between site conditions, establishment procedures and life-cycle GHG benefits of SRWC across the Upper Great Lakes Region,

(2) incorporate these relationships into biogeochemical process models and Life-Cycle Assessments (LCAs) designed to predict regional-scale impacts of varying scenarios of SRWC deployment, and

(3) develop geospatial tools to assist in the sustainable deployment of SRWC across existing Great Lakes landscapes.

Results – N₂O Fluxes

Results – Net Global Warming Potential

Results – Land Availability

 Conversion of herbaceous openlands to SRWC represents a major disruption to N cycle – increasing soil available NO_3^- (Fig. 3) and concomitant N_2O emissions at every site (Fig.

4).

ш

• We quantified productivity and GHG debt associated with converting grasslands to SRWC at our two intensively-studied sites (ES and RH) over the first 2years of plantation establishment.

• Early aboveground (Fig. 7) and belowground (Fig. 8) productivity of SRWC is low. Second-year willow at RH was the only SRWC treatment that matched productivity of existing grassland.

•Our initial objective was to identify the distribution of open lands in the region and estimate the biomass and energy potential of SRWC on these lands.

•The distribution (Fig. 1) and total area (Table 2) of open lands across the region were derived from the 2006 National Land Cover Dataset (NLCD).

• "Non-agricultural" open lands (Grasslands/Herbaceous + Pasture/Hay) totaled nearly 22,000 km² across the study region.

Figure 1. Upper Great Lakes landscape matrix showing locations of six existing study sites (Table 1).

Study Sites

•We are studying the impacts of open-land conversion

•Conversion-induced N₂O flux was a major source of direct GHG emissions on N-rich sites – typically ignored in LCA studies (Fig. 5).

•There was a 30-fold range in cumulative N₂O emissions among sites, indicating that LCA models of GHG balance need to take into account underlying site conditions.

Figure 7. Aboveground biomass production in SRWC plots at ES and RH sites in comparison to undisturbed grassland controls

•We estimated the yield potential for willow and poplar biomass across the study region for a scenario in which 10% of the non-agricultural openlands were converted to SRWC energy crops. Cumulative regional feedstock production under this scenario was 1.52 Pg yr⁻¹ for poplar and 1.74 Pg yr⁻¹ for willow (Fig. 11).

•Cumulative regional electricity generation under this scenario was 435 MW yr⁻¹ for poplar and 505 MW yr⁻¹ for willow (Fig. 12).

across a wide range of site conditions (Table 1).

•All sites have plots planted to willow (*Salix*), plots planted to hybrid poplar (*Populus*) and reference plots maintained in prior herbaceous vegetation (Fig. 2)

•We are measuring aboveground biomass production, soil GHG emissions, nutrient leaching and soil C stock changes.

Table 1. Study site characteristics. Locations of all sites are

 shown in Fig. 1. Initial soil organic C and N concentrations are given in units of g kg⁻¹ for the surface 10 cm.

Site	Esta-	Texture	Drainage	Prior Land	Initial	Initial
	ished		Class	Use	Soil C	Soil N
1	2000	T ' 1			22	2.4
	2009	Fine sandy	Moderately	Pasture/Hay	33	2.4
		loam	well			
2	2009	Silt loam	Somewhat	Pasture	35	2.7
			poorly			
3	2010	Sandy loam	Well	Pasture	19	1.4
4	2010	Loam	Somewhat	Grass-alfalfa	28	1.9
			poorly	hay		
5	2010	Fine sandy	Well	Grass-alfalfa	26	1.9
		loam		hay		
6	2010	Loamy sand	Well	Grass hay	18	1.4
7	2011	Very fine	Poorly	Grass Hay	28	1.8
		sandy loam				

Figure 5. Cumulative two-year N₂O emissions across treatments and study sites, relative to life-cycle N_2O fluxes reported in the literature. ¹Keoleian and Volk. 2005. Critical Reviews in Plant Science 24:385-406. ²Gasol et al. 2009. Biomass and Bioenergy 33(1):119–29.

•Differences among sites in cumulative N₂O fluxes were associated primarily with soil NO₃⁻ levels, and secondarily with temperature and soil NH_4^+ levels (Fig. 6).

Figure 8. Belowground biomass production in SRWC plots at ES and RH sites in comparison to undisturbed grassland controls

• Conversion of grasslands to SRWC resulted in elevated soil CO_2 and N_2O emissions over the first two years. Methane emissions were extremely low and unaffected by land conversion.

Figure 9. Cumulative soil GHG emissions from SRWC plots at ES and RH in comparison to undisturbed grassland controls.

Figure 11. Potential yearly biomass (Gg) yield on 10% of 'non-ag' open lands for poplar (a) and willow (b) assuming 7 and 8 Mg/ha/year biomass production for poplar and willow, respectively.

Figure 12. Potential yearly energy generation (MW) from poplar (a) and willow (b) bioenergy plantations. Assumptions include the following: 10% conversion from nonag open lands (2,173 km²); 7 and 8 Mg/ha/year biomass production for poplar and willow, respectively; 18 GJ / Mg energy density of biomass; power generation facility running at 70% capacity and 35% efficiency.

Future Directions

- Continue to monitor productivity and GHG balance of plantations as they grow and develop.
- Use field data to calibrate a spatially-explicit, process ecosystem model (EPIC) to simulate realistic feedstock productivity and GHG emissions across the regiobn
- Scale field-based findings to quantify consequences for regional C storage and GHG fluxes of different levels and landscape allocation patterns of SRWC production.

Figure 3. View of portion of site ES showing two reference plots, two willow plots and one poplar plot.

Figure 6: NMS ordination of cumulative annual estimates of N₂O flux for control, poplar, and willow treatments at each site overlain with mean annual NO_3^- , NH_4^+ , soil temperature, and WFPS values.

Figure 10. Cumulative, two-year global warming potential for control, poplar and willow plots at ES and RH accounting for both soil GHG emissions and biomass C stock changes. Positive values indicate a net source of GHG emissions to the atmosphere, negative values indicate a net sink.

• Develop a GIS-based assessment of the relative suitability of open lands across the region for conversion to SRWC plantations.

Acknowledgements

Initial funding for this project came from the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494 and DOE OBP Office of Energy Efficiency and Renewable Energy DE-AC05-76RL01830), and by the Michigan Agricultural Experiment Station with a grant from the State of Michigan. Continued funding comes from the US Department of Agriculture, Agriculture and Food Research Initiative, Sustainable Bioenergy Program (2010-03866).

A special thanks goes to R. Miller, B. Bender, P. Nguyen, K. Haynes, B. Daly and A. Mueller, M. Cook, J. Berlin, and B. Stein for their valuable assistance with field and lab work.