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Introduction
Biochar application to soils may have several 
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1. Fast-pyrolysis produced an 
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environmental benefits including making bio-
energy production C negative, soil C 
sequestration, reduction in greenhouse gas 
(GHG) emissions, and enhancement of soil fertility 
(Lehmann, 2007). 

OUR AIMS WERE: 

1) To quantify the potential environmental 

ash-rich, alkaline, chemically 
recalcitrant char (Fig 1).

2. Nevertheless, biochar was used 
as a substrate for microbial 
respiration, more so in the soils 
with low SOC content, where it 
suppressed native SOC 
respiration at most sites (Fig 2)
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benefits of a fast-pyrolysis biochar to 
temperate soil C sequestration, GHG 
emission reduction, and microbial 
community size and structure.

2) To determine biochar-C versus native soil 
organic C (SOC) contribution to the CO2
efflux and incorporation into microbial 
biomass using natural abundance 13C

respiration at most sites (Fig 2).
3. Increasing biochar addition rate 

stimulated CO2 emissions, 
proportionally (Fig 3).

4. Increasing biochar addition 
exponentially reduced N2O 
emissions over the 2 years of 
incubation (Fig 4)
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Figure 3: Cumulative CO2 over 2 years of laboratory incubation for 
the 4 soils and the 5 biochar addition rates.
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Figure 2: Cumulative SOC-derived and biochar-derived respiration 
over the 2 years of laboratory incubation for the 4 soils and the 5 
biochar addition rates.

GHG Balance
biomass using natural abundance 13C. incubation (Fig 4).

5. Only a small fraction of BC-C 
was respired after 2 years--
likely corresponding to the 
volatile fraction (4%) (Fig 2).

6. The remaining C fraction 
accumulated in soils and 
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Biochar characteristics
• Fast-pyrolyzed, oak (550ºC) (Natural Renewable Energy 

Lab, Golden) C  % 55.80
N % 0.22
O % 0 70 completely offset any 

stimulation of CO2 emissions 
(Fig 5).

7. Increasing biochar addition 
proportionally increased 
microbial biomass (data not 
shown). Biochar-C was actively 
used by several microbial

Figure 5: Soil C sequestration versus GHG emissions expressed as CO2
equivalents, for the 4 temperate soils after 2 years of incubation.
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Figure 4: Cumulative N2O over 2 years of laboratory incubation 
for the 4 soils and the 5 biochar addition rates.
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Microbial effects

Figure 1: Biochar characterization by pyrolysis-gas chromatography-mass indicated a recalcitrant chemical 
nature, (single, double, triple and quadruple C rings). Products of ligno-cellulose and sugars were absent.
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O % 0.70
13C  ‐27.10

IC (mg/g)  3.12
pH  10.50

Ash % 41.93
Volatile matter % 4.42

Experimental Design
used by several microbial 
groups including gram-positive, 
gram-negative bacteria and 
fungi (Fig 6).

Soils Textural class C N pH 13C
Colorado Sandy Clay Loam 1.03% 0.12% 8.95 ‐12.66
Minnesota Sandy Clay Loam 1.86% 0.19% 6.34 ‐19.25
Iowa Sandy Loam 1.14% 0.10% 7.27 ‐21.64
Michigan Clay 1.48% 0.18% 8.21 ‐15.98

• Complete factorial design
o4 soils 
o5 biochar addition rates 

• No nutrient additions
• 60% water holding 

capacity (for every soil+BC
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Figure 6: 
Biochar-derived 
PLFA-C (f-value 
from 13C) for 
biomarkers of 
microbial groups 
after 1 year of 
incubation for the 
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o0, 1, 5, 10, 20% w.w. combination)

Measurements 
• CO2 analyzed by IRGA
• 13C GC-IRMS
• CH4 and N2O analyzed by GC
• Microbial biomass via phospholipid fatty acid (PLFA). 

Figure 7 Fraction (f) of biochar-derived PLFA –C after 12 months incubation for 
the different microbial groups for the four soils and five biochar addition 
treatments. 

fast pyrolysis biochar mitigates green-house gas emissions and 
increases carbon sequestration in temperate soils. Global Change 
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4 soils and 5 
biochar additions. 


