

Introduction

- New technologies such as GIS and GPS have led to a demand for more detailed and accurate soils information than is available through traditional sources

- One technique that has drawn considerable interest is apparent electrical conductivity (EC₂)

- Any time data is collected, a valid concern is how well that data represents the system being studied

- A review of the literature shows it is common to collect EC₂ data by driving transects through a field at low speed collecting georeferenced readings at a specified time interval

- It is typically assumed that this sampling technique will collect data representative of the soils in the given field, but this assumption is rarely, if ever, tested

- This research was conducted to evaluate how well data collected using the georeferenced transect survey technique tends to represent the soils within the surveyed fields

Materials and Methods

- Two fields in central Iowa, USA, that had Order 1 soil surveys available were surveyed for EC

- These fields are referred to as the Sorenson and Larson Fields (Fig. 1)

- The Sorenson Field is 16 ha, soils were derived from loess over till and there is a wide variety of soils mapped (Fig. 2)

- The Larson Field is 25 ha, soils were derived from glaciolacustrine deposits over till and are much more uniform than in the Sorenson Field (Fig. 3)

- ArcGIS 8.3 (ESRI, Redlands, CA, USA) was used to overlay the transect data points on the soil maps

- Both graphical and tabular approaches were used to determine whether or not the sampling scheme had done a good job of representing the soils present in the field

- The graphical approach allows visual observation of trends

- The tabular approach allows numerical comparison of absolute departure from a standard (% SMU area in the field vs % EC_a data points from the SMU)

Analysis of the Representation of Soil Map Units using a Common Apparent Electrical Conductivity Sampling Scheme for the Mapping of Soil Properties

Eric C. Brevik – Departments of Natural Sciences and Agriculture and Technical Studies, Dickinson State University, Dickinson, ND 58622, USA

orenson Field Dominant Soil Series Knoke Terril				
orenson Field Dominant Soil Series Knoke Terril				
Dominant Soil Series Knoke Terril				
Knoke Terril				
Terril				
Nicellet				
NICOIIET				
Storden				
Okoboji (mucky silt loam)				
Webster				
Clarion				
Canisteo				
Delft				
Zenor				
Soils present in the Larson Field				
Ottosen				
Kossuth				
Soils present in both fields				
Okoboji (silty clay loam)				
Harps				

Table 2. The	e percentage of	each SMU and of t	he EC _a data			
points collected from each SMU in Iowa, USA.						
SMU†	% of field	% of EC _a data	% deviation			
	aroa	noints				

	area	points			
Sorenson Field					
4	5.20	4.77	-8.25		
6	7.14	8.31	16.50		
27	1.50	1.32	-12.19		
27B	3.45	3.58	3.66		
27C	0.89	0.45	-49.19		
55	10.58	11.41	7.83		
62C3	0.52	0.42	-20.04		
90	1.14	0.90	-20.55		
95	7.06	6.51	-7.75		
107	21.47	23.33	8.65		
138	2.16	2.06	-4.30		
138B	11.74	11.92	1.60		
138C	11.49	10.18	-11.34		
138C3	1.38	1.32	-4.49		
507	1.48	2.16	45.99		
707	11.94	10.76	-9.85		
828B	0.51	0.29	-43.53		
828C3	0.36	0.29	-18.57		
Larson Field					
6	0.23	0.28	19.57		
95	10.02	12.13	21.07		
288	32.13	29.76	-7.37		
388	57.61	57.82	0.37		

+Soil map unit.

‡A negative value indicates the % of EC_a data points are under-represented relative to the % area the SMU covers, a positive value indicates the EC_a data points are overrepresented.

came from each map unit. Note the slopes near 1.0 and high R² values.