The Effects of Veterinary Antibiotics on Soil Microbial Community Function in Vegetative Filter Strips and Cropland

Irene M. Unger1, Keith W. Goyne2, Robert J. Kremer3

1Westminster College, Department of Biology and Environmental Science; 2University of Missouri, Department of Soil, Environmental and Atmospheric Sciences; 3USDA-ARS, Cropping Systems and Water Quality Unit, University of Missouri

Introduction:
Veterinary antibiotics are used in confined feeding operations (CAFOs) for: therapeutic treatment of sick animals; illness prevention; enhanced growth rates; and increased feed efficiency10. Thirty to eighty percent of an antibiotic dose can rapidly pass through the G.I. tract of an animal in an unstated state. Antibiotics are introduced into agricultural ecosystems via land application of animal wastes. The presence of these compounds in the environment may adversely affect soil microbial communities, diminish water quality, and increase the spread of antibiotic resistant bacteria1-9.

Recently, investigators at the UMR Center for Agroforestry have been exploring the use of agroforestry and grass filter strips to mitigate the spread of antibiotics in the environment.

A complimentary, and essential, aspect that requires investigation is the effect of infiltrating antibiotics on soil microbial communities and functions within the rhizosphere environment.

Objectives:
To measure the effect of veterinary antibiotics in soil from agroforestry and grass filter strips and cropped areas on soil microbial community function.

To determine changes in microbial community characteristics immediately following antibiotic application as well as recovery time.

Methods:

Study Site:
University of Missouri’s Greenley Memorial Research Center, Novelty MO (40°01’ N, 93°11’ W), Paired Watershed Study Site (Fig. 1)
Agroforestry Filter Strip Watershed = 4.44 ha
Grass Filter Strip Watershed = 3.16 ha

Control = no filter strips, corn-soybean rotation = 1.65 ha

Agroforestry and grass filter strips were established in 1997. Prior to this date, these watersheds were under a corn-soybean rotation with no-till management. Filter-strips for both watersheds are 4.5 m wide and 36.5 m apart.
June 1997 – all filter strips were planted with redtop (Agrostis gigantea Roth), brome grass (Bromus spp.) and birdfoot trefoil (Lotus corniculatus L.).

November 1997 – pin oak (Quercus palustris Muellchnch), swamp white oak (Quercus albolatulus Willst.) and bur oak (Quercus macrocarpa) (Michaux) were planted 3m apart in the center of the Agroforestry filter strips.

Soil Sampling:
Bulk soil samples (1.0 per watershed) were collected in October 2009 from all watersheds at the same landscape position (Fig. 1).

Samples were moist sieved and added to incubation jars (total jars = 566).

Three treatments were applied:

1. An untreated control
2. oxytetracycline (Oxy) at concentrations of 5, 50, and 200 mg kg-1 soil
3. lincomycin (Lin) at concentrations of 5, 50, and 200 mg kg-1 soil

Samples were incubated for 0, 3, 7, 14, 21, 28, 35, 49 and 63 days.

At each time step, three sample jars per treatment and land management type were removed from the incubation experiment.

Assessment of Microbial Community Function:

- Biological ECO microplates:
 - Average Well Color Development (AWCD) – measures species activity and density, and the ability of the microbial community to respond to a particular substrate
 - Diversity (H = -p (ln p), where p = the ratio of the activity on a particular substrate to the sum of activities on all substrates)
 - Richness (total number of positive responses, i.e., OD > 0.10)
 - Evenness (E = H log S, where S = richness)

- Dehydrogenase and fluorescein diacetate hydrolysis (FDA) enzyme assays.

Data Analysis:
ANOVA (PROC GLM) to examine the effects of filter strip, antibiotic treatment (type and concentration) and time on AWCD, diversity, richness, evenness, dehydrogenase activity and FDA activity.

Results:
Significant treatment*time effects were observed for all variables except microbial community evenness. Land*time effects were observed for richness, evenness and dehydrogenase activity, while land*treatment effects were observed for diversity and dehydrogenase activity (Table 1).

SIMilar patterns were observed for both antibiotics for AWCD (Fig. 2), richness (Fig. 3), and diversity (Fig. 4). This pattern showed an early decline in response, followed by a rapid recovery with peak levels occurring around 30d. Response dropped sharply by 48d but then recovered to pre-treatment levels by 63d.

Enzyme assays also showed an early decline and recovery pattern. Dehydrogenase activity shows a another decline at day 35 but activity at day 63 is greater than pre-treatment levels (Fig. 5). FDA activity shows a more dramatic early decline at day 7, followed by a rebound to pre-treatment activities (Fig. 6).

Discussion:
- Lincomycin and oxytetracycline had an initial inhibitory effect on the soil microbial communities; however, this inhibitory effect was quickly mitigated.
- Microbial community function recovers to pre-treatment levels by 63d.

Antibiotics entering the soil environment face three primary fates: sorption, leaching, or degradation.

- Oxytetracycline seems to susceptible to sorption1 and rapid degradation.

- Lack of differences between the action of lincomycin and oxytetracycline in this study suggest that lincomycin also readily sorbs to soil surfaces.

- Once sorption occurs, these antibiotics could become substrates for some members of the soil microbial community.

- Lack of concentration effect may be related to the fast rate of sorption and degradation.

- Response curves suggest a density-dependent regulation mechanism.

Conclusions and Future Work:
The soil microbial communities of these filter strips and crop system seem robust to the effects of lincomycin and oxytetracycline at test concentrations. These results may be due to rapid sorption and microbial degradation.

- Microbial community structure will be assessed by phospholipid fatty acid analysis.

- Structural community changes may be observed despite lack of functional changes.

- The development of antibiotic resistance in these soil microbial communities is also under investigation.

Acknowledgments:
This work was funded through the University of Missouri Center for Agroforestry under cooperative agreements 58-6227-1-004 with the ARS. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. The authors wish to thank Westminster students Basanta Gurung, Akin Aytekin, Hassan Sipra, and Katie Wall and University of Missouri students Laura Green and Iohre Gardner for their assistance with data collection and data entry.

Table 1: ANOVA Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWCD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxytetracycline</td>
<td>1.95</td>
<td>0.15</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>1.89</td>
<td>0.17</td>
</tr>
<tr>
<td>Soil type</td>
<td>0.60</td>
<td>0.44</td>
</tr>
<tr>
<td>Treatment</td>
<td>15.41</td>
<td><0.001</td>
</tr>
<tr>
<td>Time</td>
<td>3.07</td>
<td>0.003</td>
</tr>
<tr>
<td>Soil type*Time</td>
<td>0.76</td>
<td>0.53</td>
</tr>
</tbody>
</table>

References:
4. Veum, R.E., R.S. Bååth, and E. Bååth. 2008. No long term effects of veterinary antibiotic application as well as recovery effects were observed for diversity and dehydrogenase activity (Table 1).

Similar patterns were observed for both antibiotics for AWCD (Fig. 2), richness (Fig. 3), and diversity (Fig. 4). This pattern showed an early decline in response, followed by a rapid recovery with peak levels occurring around 30d. Response dropped sharply by 48d but then recovered to pre-treatment levels by 63d.

Enzyme assays also showed an early decline and recovery pattern. Dehydrogenase activity shows a another decline at day 35 but activity at day 63 is greater than pre-treatment levels (Fig. 5). FDA activity shows a more dramatic early decline at day 7, followed by a rebound to pre-treatment activities (Fig. 6).

Discussion:
Lincomycin and oxytetracycline had an initial inhibitory effect on the soil microbial communities; however, this inhibitory effect was quickly mitigated.

Microbial community function recovers to pre-treatment levels by 63d.

Antibiotics entering the soil environment face three primary fates: sorption, leaching or degradation.

Oxytetracycline seems to susceptible to sorption and rapid degradation.

Lack of differences between the action of lincomycin and oxytetracycline in this study suggest that lincomycin also readily sorbs to soil surfaces.

Once sorption occurs, these antibiotics could become substrates for some members of the soil microbial community.

Lack of concentration effect may be related to the fast rate of sorption and degradation.

Response curves suggest a density-dependent regulation mechanism.

Conclusions and Future Work:
The soil microbial communities of these filter strips and crop system seem robust to the effects of lincomycin and oxytetracycline at test concentrations. These results may be due to rapid sorption and microbial degradation.

Microbial community structure will be assessed by phospholipid fatty acid analysis.

Structural community changes may be observed despite lack of functional changes.

The development of antibiotic resistance in these soil microbial communities is also under investigation.

Acknowledgments:
This work was funded through the University of Missouri Center for Agroforestry under cooperative agreements 58-6227-1-004 with the ARS. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. The authors wish to thank Westminster students Basanta Gurung, Akin Aytekin, Hassan Sipra, and Katie Wall and University of Missouri students Laura Green and Iohre Gardner for their assistance with data collection and data entry.