

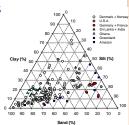
Modeling and Prediction of Soil Water Vapor Sorption Isotherms

Emmanuel Arthur⁽¹⁾(Emmanuel. Arthur⁽²⁾agro. au. dk), Markus Tuller², Per Moldrup³, Lis W. de Jonge¹

¹Dept. of Agroecology, Aarhus University, Denmark. ²Dept. of Soil, Water and Environ. Sci. The Univ. of Arizona, USA. ³Dept. of Civil Engineering, Aalborg University, Denmark.

Introduction

- Soil water vapor sorption isotherms (SI) describe the relationship between water activity (aw) and soil water content along adsorption or desorption paths
- SIs are important for modeling numerous soil biological and physical processes, as well as estimating several soil properties (e.g., specific surface area, clay content)
- Although several theoretical and empirical models exists to characterize SIs for food and engineering products, their applicability to soil SIs is not known
- Measurement of SIs are either time consuming, or require expensive equipment, thus the ability to estimate SIs from readily available soil properties is crucial


Objectives

- Evaluate the potential of theoretical and empirical isotherm models to accurately characterize measured vapor sorption isotherms for a wide range of soils
- Develop and test regression models for estimating the isotherms from clay content

Methods

Investigated soils

207 top-soils varying in texture, organic matter (0.2 to 50%), and clay mineralogy (kaolinite, smectite, mixed clays) across five continents

- Water vapor sorption isotherms Measured with a Vapor sorption analyzer at 25°C Water activity range: 0.03 to 0.93 for both adsorption and desorption paths
- Models

Theoretical models

i. Guggenheim-Anderson-Boer¹ (GAB) $M = M_0 CKa_w / [(1 - Ka_w)(1 - Ka_w + CKa_w)]$

ii. Modified BET² (MBET)

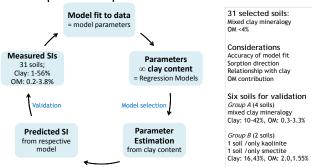
$$M = a_w (1 - a_w^n) / [(k_1 + k_2 a_w)(1 - a_w)]$$

iii. Lewicki³ (LEW)

 $M = F\{[1/(1-a_w)^G] - [1/(1+a_w^H)]\}$

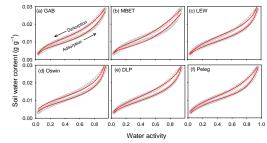
 $M = \text{soil water content } (g g^{-1})$ Free model parameters in

blue font

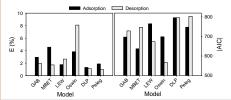

Empirical models

- (i) Oswin⁴ $M = A[(a_w/1 a_w)]^B$ (ii) Double Log Polynomial⁵(DLP)
- $M = b_0 + b_1 \gamma + b_2 \gamma^2 + b_2 \gamma^3$ (iii) Peleg⁶ $M = K_1 a_w^{n_1} + K_2 a_w^{n_2}$ $\gamma = \ln[-\ln(a_{...})]$

Model fitting and performance evaluation


Model parameterization by nonlinear least squares method with measured SIs (adsorption and desorption separately) Performance evaluation: Mean relative percentage deviation modulus (E) and Akaike Information Criterion (AIC)

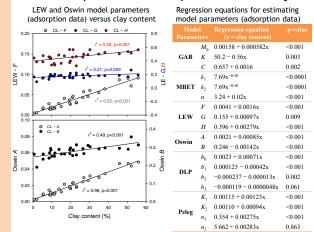
Development of SI prediction models



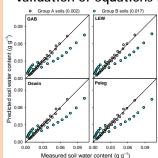
Results

Model fits to measured SI for a selected soil

Model performance (average of 207 soils)



Best models Adsorption theoretical - LEW empirical- DLP


Desorption theoretical - MBET Empirical - Peleg

*Oswin model not suited for desorption isotherms

Relationship between model parameters and clay

Validation of equations for SI prediction

- Predictions of water content for nine aw levels (0.10 to 0.90) based on estimated model parameters
- RMSE values provided in bracket after legend
- Poor prediction of two Group B soils due to significantly smaller and larger water contents, respectively, for kaolinitic and smectitic soils
- Number of model parameters (2, 3, 4) have no impact on prediction

Conclusions

- All tested models, except the Oswin model for desorption data, accurately characterized the sorption isotherms
- Reasonably accurate prediction of SI from clay content but significant errors for kaolinitic or smectitic soils

Acknowledgments

The study was financed by the Danish Council for Independent Research | Technology and Production Sciences via the project Water Vapor Sorption Isotherms as Proxy for Soil Surface Properties (DFF -

- 1. Van den Berg, C. et al. (1981). Water activity: influences on food quality, 147-177.
- 2. Pickett, G. (1945). J Am Chem Soc, 67 (11), 1958-1692.
- 3. Lewicki, P. (1198). J Food Process Eng., 21(2), 127-144.
- 4. Oswin, C.R. (1946). J Soc Chem Ind, 65(12), 419-421.
- 5. Condon, J.B. (2006) Surface area and porosity determinations by physisorption.
- 6. Peleg, M. (1993). J Food Proc Eng., 16(1), 21-37

