Evaluation of Water Vapor Sorption Hysteresis in Soils: The Role of Organic Matter and Clay

Emmanuel Arthur⁽¹⁾(Emmanuel. Arthur⁽²⁾agro. au. dk), Markus Tuller², Per Moldrup³, Lis W. de Jonge¹

¹Dept. of Agroecology, Aarhus University, Denmark. ²Dept. of Soil, Water and Environ. Sci. The Univ. of Arizona, USA. ³Dept. of Civil Engineering, Aalborg University, Denmark.

Introduction

- Water sorption hystesis (H) is the difference exhibited in the relationship between the water content (w) of a soil and the corresponding water potential/relative humidity (RH) obtained by wetting or drying
- Extensive literature exist on causes and quantification of H for soil water potential range from 0 to -1.5 MPa but information on H is limited for water potentials < -10 MPa
- Consideration of *H* in the range from -10 to -480 MPa is crucial for modeling physical and biological soil processes

Objectives

- Assess and compare recently developed methods for quantifying water vapor sorption hysteresis in soils and pure clays for the water potential range of -10 to -480 MPa
- Investigate the role of organic matter (OM) and clay content and type on water vapor hysteresis

Methods

Investigated Samples

Five pure clays: Kaolinite, Illite, Vermiculite, Halloysite Montmorillonite

Two groups of soils

- (i) Six soils with clay gradient (11-46%) and OM~2.6%,
- (ii) 20 soils, OM gradient (3-15%) and clay content~11%.

 Sorption Isotherm Measurements Wetting and drying isotherms measured with Vapor Sorption Analyzer

(i) Based on number of molecular layers (n) from a modified BET (MBET) isotherm equation^{1,2}

$$w = \frac{RH(1 - RH^n)'}{[(k_1 + k_2RH)(1 - RH)]}$$

Model fitted separately to wetting and drying curves to obtain "n" and calculate H_1

Model parameters: k_1 , k_2 , nn = molecular layers in multilayer

$$H_1 = \frac{n_{wetting} - n_{drying}}{n_{wetting}}$$

(ii) Average Degree of Hysteresis3, Dh

10 data points between 3% and 93%RH selected for calculating H₂

(iii) Single parameter non-singularity model⁴, SPN

$$pF = pF_1 - (pF_1 - pF_2) \left(\frac{w_1 - w}{w_1 - w_2}\right)$$

Model fitted separately for wetting and drying curves to obtain 'N' and calculate H2

$$H_3 = \frac{N_{wetting}}{N_{drying}}$$

Results

Pure clavs

MBET-n and SPN methods were unable to capture hysteresis *Dh* method accurately described hysteresis (H_3)

Soils

All 3 methods successfully quantified H for both groups of soils Clay gradient soils

Clay%	12	20	23	35	38	46
H ₁	0.22	0.25	0.24	0.22	0.22	0.28
H ₂	0.21	0.24	0.23	0.21	0.21	0.25
H ₃	1.22	1.19	1.16	1.33	1.37	1.46

H₁ and H₂: no clear relationship with clay content H₃: increases with increasing clay content

Organic matter gradient soils

Relationship between soil OM and the three hysteresis indexes (H_1, H_2, H_3)

- No clear effect of OM on H_1 or H_2
- For H₂, large contents of organic matter associated with greater degree of hysteresis

Comparison of the three hysteresis indexes

- Discrepancy between H_3 and other indexes due to scaling by magnitude of water content/molecular layers
- Similarities between H_4 and H_2 and their physical basis suggest they more accurately describe the hysteresis phenomenon

Trend of larger H_3 values with increasing clay or OM could be a reflection of increasing water content, not actual hysteresis

Conclusions

- All three methods accurately captured hysteresis for soils; but for pure clays, only the *Dh* method was appropriate
- For pure clays, extent of interlayer hydration determines the degree of hysteresis
- For soils, OM and clay contents showed no clear effect on H

Acknowledgments

The study was financed by the Danish Council for Independent Research | Technology and Production Sciences via the project Water Vapor Sorption Isotherms as Proxy for Soil Surface

- 1. Pickett, G. (1945), Modification of the Brunauer-Emmett-Teller Theory of Multimolecular Adsorption, J Am Chem Soc, 67(11), 1958-1962.
- 2. Arthur E., Tuller, M., Moldrup, P., & de Jonge., L.W. (2015). Evaluation of Theoretical and Empirical Water Vapor Sorption Isotherm Models for Soils. Water Resources Research. (Under
- 3. Lu, N., & M. Khorshidi (2015), Mechanisms for Soil-Water Retention and Hysteresis at High Suction Range, J Geotech Geoenviron, 0(0), 04015032.
- 4. Arthur E., Tuller, M., Moldrup, P., Resurreccion, A.C., Meding, M.S., Kawamoto, K., Komatsu, T., & de Jonge., L.W. (2013). Soil specific surface area and non-singularity of soil-water retention at low saturations. Soil Science Society of America Journal 77 (1); 43-53.

