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A

Introduction

d Excess irrigation in arid and semiarid regions poses risks for
contamination of environmental resources.

. The development and application of sustainable and
environmentally friendly irrigation strategies requires
knowledge of the root zone moisture distribution, which is
challenging to obtain for large areas with standard sensor
technology.

Remote sensing provides excellent means for estimation of
large-scale surface moisture distributions, but limitations
still exist, especially with extending surface moisture
information to the root zone.
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Objectives

1 Find an appropriate method to obtain topsoil moisture from
EO-1 Hyperion hyperspectral imagery.

J Evaluate different methods for estimating root zone soil
moisture from surface moisture distributions with a limited
number of experimental data.

Materials and Methods

J Soil sampling was conducted in a square field of 81 ha
located in the Hetao Irrigation District in China (Fig. 1).

J Two hyperspectral datasets were also collected. The first
dataset was obtained with the EO-1 Hyperion sensor before
spring sowing; the second dataset was obtained with a
hyperspectral camera (400-2500 nm) before soil sampling.
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Fig 1: Field site in the Hetao Irrigation District and applied sampling scheme.
Soil samples were extracted both on April 6 and 26, 2013.

1 The soil moisture index (SMI, Eq. 1), the IG function (IG, Eq.
2), and the PLS method were used to obtain surface
moisture from hyperspectral data.

] Geostatistics were applied to randomly generate 2000 soil
particle size distributions (PSDs) based on measured
textures (Fig. 2). The PSDs were then used in ROSETTA to
obtain soil hydraulic properties to parameterize HYDRUS-1D
and simulate root zone moisture distributions.

1 Four different methods for obtaining root zone soil moisture
were evaluated (Fig. 3).

SMI = i (1)  R(A)=R, +(R, - Rl)eXp(_M' _fO)zj (2)
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R, +R
R,; and R,, represent
reflectance in specific
wavelengths.

A is the maximum wavelength, A, is the peak position wavelength,
R,; is the maximum reflectance, R,, is the minimum reflectance at
function center, and o is the Gaussian function deviation
parameter describing the width of the Gaussian peak.

Preliminary Results
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Fig 4: Semivariograms of the spatial distributions of sand and clay percentages

J A Gaussian model was used to fit the sand percentage, and
vertical section of clay percentage; a spherical model was
used to fit the horizontal section of clay percentage.

0.40
b: So1l moisture index (SMT) 5
0.35- #® Calibration
v < Validation o ®
C )
ﬁh. } o
—. .30 &
] ®
= O % A
= -« C .-
=) o o o
2 *, *
Z * G C.I}L%
E 0.204 o p
B W ‘% o)
& O
g0l ©
3
= e A Calibration:
] : n - )
2 1 Ling R—0.7954
RMSE-0.0326
0.054 Yahdation:
E-0.6579
RASE-0.0449
0.00

0.00  0.05 010 015 020 025 030 033 0.40

Observed topsoil moisture (m’ m™)

d: Volumetric moisture of topsoil (PLS method)

.x. [
— q
-‘ 1
L L -
H BB
||

Fig 5: Volumetric moisture content of topsoil (d) obtained from inverted Gaussian
model (a), soil moisture index (b), and partial least squares regression (c).

1 The optimal wavelengths in Eq. 1 were 1034 nm and 1064
nm; the IG model failed to accurately predict topsoil
moisture; the PLS method exhibited highest R of all

1 The PLS method was used to estimate topsoil moisture from
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Fig 6: Average root zone soil moisture obtained with 4 different methods (see Fig.3)

J Cokriging (M2) with experimental topsoil data improved
kriging predictions (M1), but using imagery as collaborative
variable (M3) failed to enhance prediction accuracy.

. The empirical relationship (Eq. 3) obtained from HYDRUS-1D
simulations (M4) exhibited the highest R and lowest RMSE
of the 4 investigated methods.

0,0 = 0.35710, +0.2216 (3)

Oroot aNd Gy, are the root zone and topsoil volumetric moisture contents.

Conclusions

1 The PLS method provides powerful means for prediction of
surface soil moisture from hyperspectral data.

1 Cokriging based on measured root zone and topsoil moisture
predicts root zone moisture distributions more accurately
than kriging.

1 HYDRUS-1D simulations revealed that a linear function can
be used to predict root zone moisture from surface moisture.

1 Because the lack of temporal soil property data HYDRUS
could not be applied in inverse mode. Hence, soil hydraulic
parameters were generated randomly and Monte Carlo
simulations were performed to determine empirical
relationships.
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