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Abstract

Viodeling Sheet, Rill, and Ephemeral Gully Erosion

S.M. Dabney, D.A.N. Vieira, and D.C. Yoder
USDA-ARS and the University of Tennessee

with RUSLER and EphGEE

RUSLER short for RUSLE2-Raster

A new modeling system is being developed to provide spatially-distributed runoff and soil
erosion andI(‘TIan for conservation nlannlnn Fnhpmpml mlllv erosion is not included In

e ¥ wews

predlctlons made with the Revised Unlversal SOII Loss Equation, version 2 (RUSLEZ2). A
new distributed application called RUSLER (RUSLE2-Raster) predicts distributed runoff
and solil loss and its output can be linked with the new Ephemeral Gully Erosion Estimator
(EphGEE). Digital representations of the area of interest are created using high-resolution
topography and data retrieved from established databases of soil properties, climate, and
agricultural operations. The system utilizes a library of terrain processing tools to deduce
surface drainage from topography, determine the location of potential ephemeral gullies, and
subdivide the study area into catchments for calculations of runoff and sheet-and-rill erosion
using RUSLER. EphGEE computes gully evolution based on local soil erodibility and flow
and sediment transport conditions. These models were applied to a 6.3 ha research
watershed near Treynor, |A, where runoff and sediment yield were measured from 1975 —
1991. Using a 3-m raster DEM, results indicate that ephemeral gully erosion contributed
about one-third of the amount of sheet and rill erosion, and that considerable deposition of
sediment originating from both sources occurred within the grassed waterway. For ambient
conditions, predicted annual average watershed sediment yield was 17 Mg ha! year?, 20%
greater than the measured value of 15 Mg ha! year.
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RUSLE?2 - sheet and rill erosion

—— RUSLEZ?, the Revised Universal Soil Loss
Equation version 2, is used by USDA-NRCS

= thousands of times every day for conservation
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\ planning and to determine farm program

= eligibility. It is supported by a vast national

!l database and supports many other systems,
Including: AnnAGNPS, Purdue’s Manure
Management Planner, Wisconsin's SNAP-
PLUS nutrient management planning system,
AGREN’s 2-D erosion calculator, DOE’s
sustainable residue harvesting tools, the
USDA-NRCS Natural Resources Inventory.

RUSLEZ? calculates erosion,
transport, and deposition or coarse
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(sand and large aggregate)
sediment fractions on complex
one-dimensional hillslope flow
paths, called “profiles”.

RUSLE?2 runoff is not calculated

from a rain event sequence; rather
an annual channel forming runoff
event sequence are calculated
from average monthly climate
data, soil properties, and land
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oStatistical distribution parameters
describing runoff event depths

Maximum runoff event in the
annual event sequence is Ry 45

RUSLEZ then determines event
sequence dates and depths

(totaling annual runoff) and scales

event durations (averaging 60
0 ’ ’ minutes) based on expected
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estimates two-dimensional sheet and rill erosion and sediment delivery to field channels.
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Field Site for Testing

RUSLER and EphGEE simulations without any local calibration were compared with

observations on Watershed 11 of the USDA-ARS Deep Loess Research Station located e

near Treynor, lowa). The predominant soil was Monona silt loam (fine-silty, mixed, @ === == ﬁ
superactive, mesic Typic Hapludolls) with 24% clay. This 6.3 ha watershed was used in the — AA =
original RUSLE1.04 documentation (Renard et al. 1997) to illustrate the proper selection g ”’iiii”,, 7 s =
of four hillslope profiles that end in areas of concentrated flow. A 600 m? contributing area '“‘j: i _- —
resulted in channel network that resembled the gullies observed in aerial photos. ..... =
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\ EphGEE estimated both
channel degradation and
aggregation. Deposition
was common where
tributaries met the

backwater effects. The
grassed waterway caused
the main channel to be
depositional throughout
Its last 200 m.

watershed sediment yield would
have been 33 Mg ha! yrt if the
grassed waterway had not been in
place. Small depositional areas
were predicted upslope of the
measurement weir due to flat
topography.

When the waterway was
simulated, estimated sediment
yield of 17 Mg ha yr! was about
20% greater than the measured
average sediment vield of 15 Mg
hal yrl. The grassed waterway

aER 555*“**\ With grassed seitoss Mgha’) . :
J mowesnon — [eCUCEd sediment yield by about
: waterway B oco-o.
1 0.01-0.05
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50% and ephemeral gully erosion
contributed about 25% of the

sediment delivered from the
watershed.

REFERENCE:

Dabney, S. M., D. A. N. Vieira, D.
C. Yoder, E. J. Langendoen, R. R.
Wells, and M. E. Ursic. 2014.
Spatially distributed sheet, rill,

anAd anhamaral mlll\l nrnunn
CAIITUA \JPI Iviltiuvi QU 3 UIIVIl .

Journal of Hydrologlc
Engineering (in press).




