Effects of biochar on soil microbial communities and nitrogen cycling in two California nutrient management systems.

♦ Sorption of labile

▶ Inhibitory compounds

How will biochar's properties

change after aging in the soil?

↓ CEC from sites masked by OM?

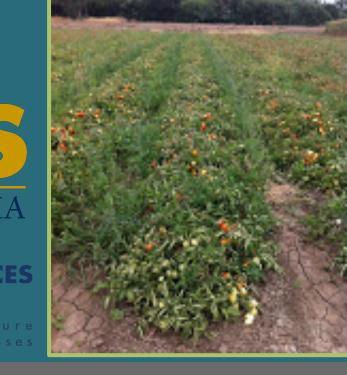
↑ CEC from oxidation?

▶ Inhibitory compounds?

C to biochar⁶

Deirdre E. Griffin, Daoyuan Wang, Kate M. Scow, Sanjai J. Parikh University of California-Davis, Department of Land, Air, and Water Resources

In what ways could biochar affect microbes in the N cycle?


Organic N

↑pH increase¹

ightharpoonup NH, $^+$ sorbed by cation

exchange sites 1,3,6

Introduction

• There are still knowledge gaps concerning short- and long-term effects of biochars on soil microbial abundance and microbially-driven processes, such as N cycling.

↑ Microbial activity from

increased labile C &

habitat 1,6

♦ NH₃ sorbed by

groups 1,2,3,6

acidic functional

- Impacts of biochars and other pyrogenic C products on soil microbes and N transformations have been well-studied in low input systems, such as forests or highly weathered tropical soils.
- Some studies have found:
 - ♠ N mineralization rates^{5,6}
 - ♠ Nitrification rates^{1,4,6}
 - ↑ Ammonium-oxidizing bacteria (AOB) abundance^{1,4}
- But effects of biochars depend on the properties of the system to which they are being added.
- More long-term, field studies on biochars' effects in intensively-managed, agricultural systems are needed.
- Soil N cycling dynamics will differ based on the nutrient management system used. Therefore, we need to explore biochar's impacts in conjunction with both mineral and organic N fertilizers.

We hypothesize that in agricultural systems, biochar can change the abundance of ammonia-oxidizing and total microorganisms, affect N mineralization and nitrification dynamics, thus influencing crop yields.

Objectives

- To assess how amendment of walnut shell biochar influences the abundance of specific microbial groups in agricultural soils.
- To determine whether potential changes in microbial groups, such as ammonia-oxidizing bacteria (AOB) and archaea (AOA) are reflected in soil N transformations.

Materials and Methods

Location

• UC Davis's Russell Ranch Sustainable Agriculture Facility provides a unique opportunity for long-term field research.

Materials:

- Walnut shell biochar: produced at 900°C, pH= 9.7, Surface Area = 221.7 m² g⁻¹
- Yolo silt loam soil: $pH_{MF, CP} = 7.7$, $pH_{MF+BC} = 7.9$, $pH_{CP+BC} = 7.8$

Experimental Setup:

- Biochar applied at 10 t ha⁻¹ (\sim 0.5% w:w) once in May 2012.
- RCBD with 4 blocks, 1 treatment rep/block; 2 x 2 factorial treatments
- Planted in tomato-corn rotation since Summer 2012

Sampling and Processing:

- o-30 cm cores sampled from each plot throughout the summer and winter seasons
- Subsamples extracted immediately in 0.5 M K2SO4 for NH, + and NO, concentrations
- Subsamples frozen at -20 °C for DNA extraction

Fertilizer (MF) Compost (CP)

Mineral fertilizer: UAN Compost: Poultry manure compost

+/- Biochar

Mineral

Biochar +

Mineral

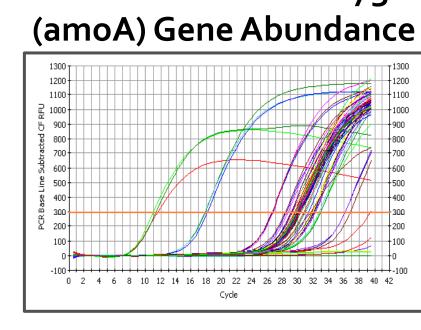
Fertilizer

(MF+BC)

Biochar +

Compost

(CP+BC)


Methods:

Ammonium and Nitrate

Ammonium-N and nitrate-N concentrations measured colorimetrically from 0.5 M K₂SO₄ extracts⁷

165 & Ammonia Monooxygenase

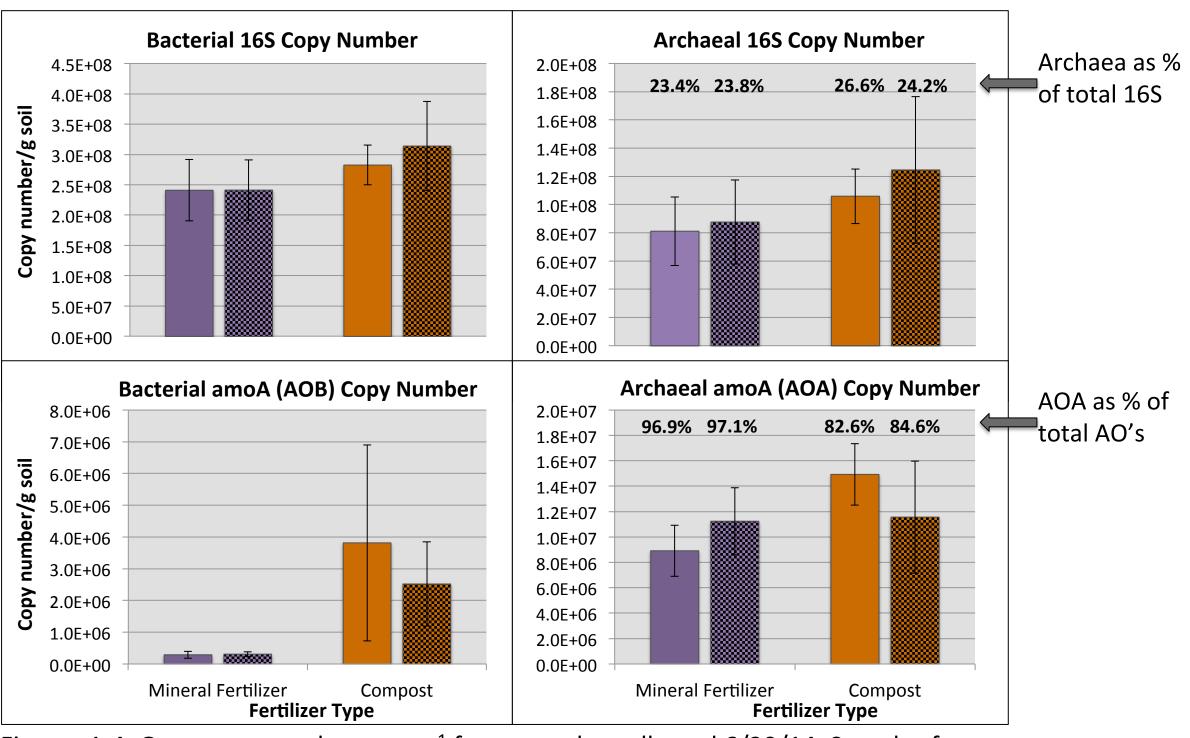
Bacterial and Archaeal 16S and amoA gene copy <u>numbers</u> measured using quantitative PCR (qPCR)

Potentially Mineralizable N

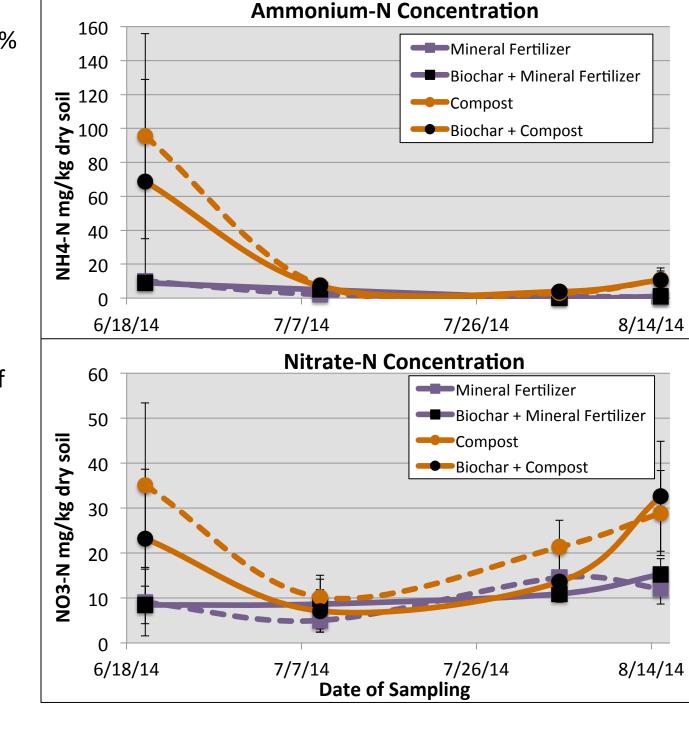
PMN determined from an anaerobic incubation of samples collected 7/9/14. NH, +-N concentration measured after 7 days.8

Crop Yields

Crop yields were measured on a dry weight basis from hand and machine harvests of fruit/grain and biomass.

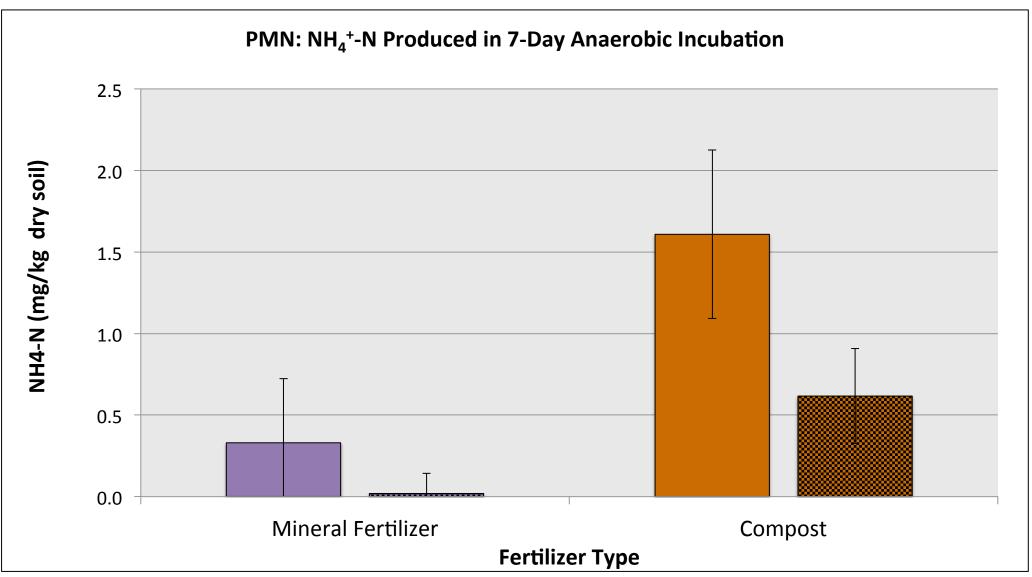

Results

qPCR

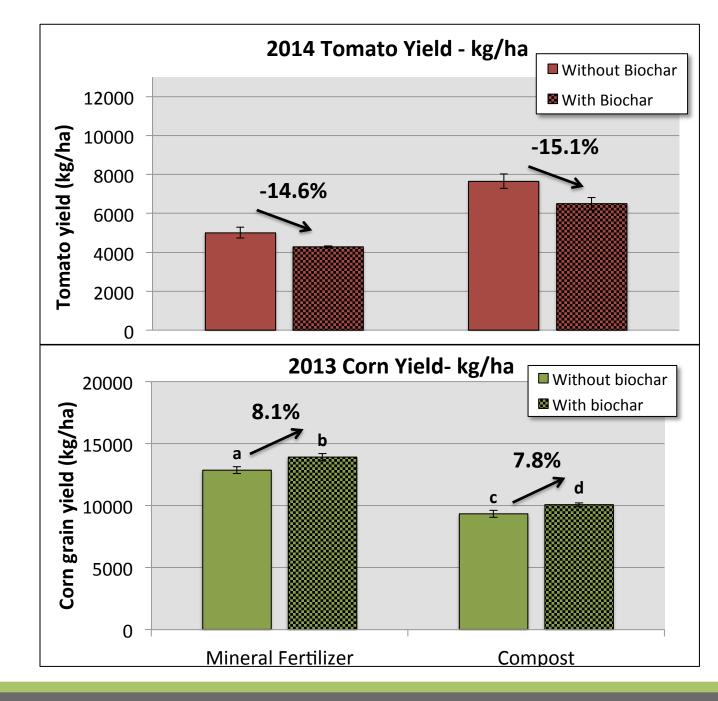

- Total microbial biomass (16S) was slightly higher (NS) in CP+BC plots, perhaps due to labile C availability.
- CP plots had the highest AO organisms (NS), with slightly reduced numbers in CP+BC, possibly due to sorption of NH_3 and NH_4^+ .
- Biochar addition increased AOA slightly in MF, but decreased them with CP. Potential explanations include the higher pH in MF+BC and availability of NH₃ from organic sources, which AOA may prefer.⁹

Ammonium & Nitrate

- Plots with biochar added did not show significant differences in extractable NH₄+-N and NO₃--N concentrations compared with plots without biochar.
- However, CP+BC did tend to have lower inorganic N compared to CP alone, particularly at the beginning of the season.



Figures 1-4. Gene copy numbers gram⁻¹ from samples collected 6/20/14. Samples from other time points followed similar trends. Graphs show mean ± SE.


Potentially Mineralizable N

- +BC treatments showed lower values (NS) of PMN compared with soils with the same fertilizer –BC.
- This may be due to NH₃ and NH₄⁺ adsorption onto biochar surfaces, reducing availability of NH₃ to microbes and the concentrations of extractable NH₄⁺.

Yield - 2013 and 2014

Tomato yields in 2014 were significantly lower in plots with biochar. However, 2013 corn yields showed ~8% increase in yield with biochar.

Conclusions

- Though some trends are present, biochar amendment did not significantly alter the abundance of ammonia-oxidizing (AO) or total bacteria & archaea over the 2014 growing season.
- Biochar did not significantly change inorganic N concentrations over the growing season.
- However, + BC plots showed lower PMN, potentially due to sorption of NH₃ and NH₄+ onto biochar surfaces.
- Biochar also decreased tomato yields by ~15% in both fertilizer regimes. This showed the opposite trend to the 2013 season, where corn yields increased by ~8% with biochar. There may be interactions with differing nutrient and water uptake and management patterns between these two crops.
- Overall, biochar amendment to agricultural soils does not appear to significantly change microbial abundance or N transformations in the field. However, it is still having a significant effect on crop yield.

Next Steps

- Our long-term study will continue, and in Nov. 2014, walnut shell biochar will be reapplied at a rate of 10 tonnes ha-1.
- We will continue to explore potential explanations for yield differences, including NH_3 and NH_4 sorption.
- Other planned measurements include:
 - Phospholipid Fatty Acid Analysis (PLFA)
 - Ca^{2+} , K^+ , Mg^{2+} , $SO_{\lambda^{2-}}$ ion concentrations to further assess fertility differences with biochar addition.

Acknowledgments

- NSF Graduate Research Fellowship
- Beatrice Oberly and S. Atwood McKeehan Fellowship
- Henry A. Jastro Graduate Research Award
- Scow & Parikh Lab Groups, particularly Phirun Khim for many hours of lab help and Annie Bossange for many hours discussion and support.
- Dr. Fungai Mukome for biochar characterization data

Contact: <u>degriffin@ucdavis.edu</u>

References

1. Clough & Condron, JEQ, 2010; 2. Anderson et al., Agric Ecosyst Environ, 2014. 3. Taghizadeh-Toosie et al., Plant Soil, 2012. 4. Ball et al., JEQ, 2010. **5**. DeLuca et al., SSSAJ, 2006. **6**. DeLuca et al., Biochar Effects on Soil Nutrient Transformations, In: Biochar for Environ Managem. 2009. 7. Doane & Horwath, Analytical Letters, 2003. **8**. Waring & Bremner, *Nature*, 1964. **9**. Hatzenpichler, *Appl* & Environ Microbiol, 2012.