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Abstract

Live fuel moisture is an important component of wildfire behavior in fire-prone ecosystems. Fuel moisture content is a critical
component in determining the probability of ignition, rate of forest fire spread, rate of energy release, and production of smoke
by burning and smoldering fuel. Live fuel moisture content is in part dependent on soil moisture contents, as well as
meteorological variables such as temperature and vapor pressure. Four sample sites across a precipitation gradient in central
Oregon were instrumented with volumetric water moisture meters at 50cm and vegetation sampled for moisture content. Live
fuels were sampled at each site every two weeks April through October between 2008 and 2013. Plant communities reflected
the precipitation gradient. Live fuel moisture demonstrated that plant populations in the community peak in moisture content at
different times. Annual moisture content patterns of both soil and fuels are highly variable and partly tied to timing and quantity
of precipitation events. The degree of variability suggests that predicting live fuel moisture for real-time fire management, while
a valuable tool, is a complex operation.
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heat source and increase fire intensity
 Accurate LFM can improve fire behavior modeling and threat
assessment
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Figure 1: Relationship between Live Fuel Moisture and area
burned for California Wildfires between 1984 and 2005.
(From Dennison et al. 2008)

Purpose

* Develop baseline of LFM for multiple plant species in various climatic environments to help understand how to

use LFM across climatic gradients with species variation

e Develop baseline of soil moisture which corresponds to live fuel moisture and species types

Methods
T —— * Four study sites in the Northern Great Basin were established
hhhhhhh = adjacent to Remote Automated Weather Stations (RAWS) in four
L. climatic zones (Fig. 2, 3)
(? R — * Site vegetation was characterized and major shrub species selected
L - for LFM monitoring.
) E TTTTTT L * 5samples per species per site, components of three plants per
J i Wﬁ sample
\ fJ — * New, old, leafy growth (Brown et. al, 2009)
g o * Approximately every two weeks, weather dependent April —
e - | nE October
b e * Same time of day for sampling
Figure 2: Site Locations in Oregon. e Dried for 24h at 75°C and LFM calculated (LFM = water loss/dry

grams)

installed at 50 cm at each site (Fig. 4)
* Soils characterized for
e Texture @ 50 cm — hydrometer method
e Coarse fragments by volume
* Organic matter by loss on ignition
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Results

 Site Characteristics
* Vegetation is mixed conifer on wetter sites (TUM and COL) and

sagebrush-juniper at drier locations (HAY and RDM) (Table 1)
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e Eastern sage-juniper sites experience higher temperatures during
the growing season, where mixed conifer sites have similar
temperature profiles (Fig. 5a)

e Study period precipitation (Apr-Oct) shows RDM is most limited
where TUM and COL are similar. Excluding Sep and Oct data, which
are the tail end of fire season, indicates that important wet-up can
occur in those months compared to summer months (Fig. 5b & 5c)

Site Component Species Component
cover (%)
Tumalo Overstory Ponderosa pine (Pinus ponderosa) 50
Ridge
Elev 1218 m Western juniper (Juniperus 2
occidentalis)
Shrub Green Manzanita (Acrostaphylos 20
patula)
Antelope bitterbrush (Pershia 20
tridentata)
Snowbrush (Ceanothus velutinus) 3
Grass/Forb Idaho fescue (Festuca idahoensis) 10
Other 23
Colgate Overstory Ponderosa pine 30
Elev 1006 m Western juniper 1
Shrub Green Manzanita 8
Antelope bitterbrush 20
Grasses/Forb Idaho fescue <1
Blue wildrye (Elymus glaucus) 1
Haystack Overstory Western juniper 10

Elev 992 m Shrub Basin big sagebrush (Artemisia
tridentata ssp tridentata)

Rabbitbrush (Chrysotahmnus spp.)

30

35

Grass/Forb Crested wheatgrass (Agropyron 8
cristatum)
Other 22
Redmond* Overstory Western juniper 15
Elev 930 m  Shrub Basin big sage 15
Grass/forb Idaho fescue 1

Table 1 Site Characteristics

* Soil Moisture and Temperature
* Soil properties of texture and organic carbon (Table 2), as well as site elevation can explain some of the variations in soil temperature and
moisture dynamics
* Highest soil moisture contents are associated with both site precipitation (TUM) and highest soil clay and OC contents (HAY) (Fig. 6a&b)
* Soil temperature associated with elevation, cooling with increasing elevation. Clay and organic carbon may also play a role.
* LFM is variable by species and location (Fig 7 a&b). LFM does not have appear to be controlled by any one variable, Simple LFM modeling for fire
may not capture the variability between species.
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Figure 6: Average Hydramon soil moisture by volume and
soil temperature at 50 cm depth.

Future work

Argixerolls Haploxerolls
Figure 3: Photos of sample sites and soil great groups Coarse
Site Soil Texture % Clay % Org. Carbon Fragments Mapped Soil Great Groups
Tumalo Sandy Loam 16 4.4 8% Vitrixerands
Colgate Sandy Loam 8 3.5 30% Vitrixerands
Haystack Sandy Clay Loam 22 6.8 8% Argixerolls
Redmond Sandy Loam 11 3.1 5% Haploxerolls

Table 2: Soil properties at 50 cm depth and mapped taxonomy.

* Investigate influence of volcanic ash on sensor moisture calibration

Patterns of Live Fuel Moisture in the Northern Great Basin
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Figure 5: Annual site temperature and precipitation profiles and study period
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Figure 7: Live fuel moisture and soil moisture for a) Colgate
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* Explore development of model to predict live fuel moisture from weather variables and soil moisture
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