Dose-response effect of prairie acacia condensed tannins on ruminal methanogenesis: Plant Sciences Structure-activity relationships Harley D. Naumann¹, A.E. Hagerman², M.A. Fonseca³, S. Masih², L.O. Tedeschi⁴, J.P. Muir⁵ ¹University of Missouri, Columbia, MO, ²Miami University, Oxford, OH, ³Universidade Federal de Viçosa, Minas Gerais, ⁴Texas A&M University, College Station, TX, ⁵Texas A&M AgriLife Research, Stephenville, TX ## Background Interactions between rumen microbes and the ruminant host are mediated in part by chemical constituents of the host diet. Understanding how phytochemicals affect ruminant-microbe interactions may result in the use of **novel** forages to improve productivity and reduce production of the greenhouse gas methane. Prairie acacia (PA) is a rangeland forage legume that produces a moderate amount of biologically active proanthocyanidins. ## Objectives - Evaluate the dose-response effect of replacing alfalfa hay with PA at levels of 0, 25, 50 and 100% on ruminal CH₄ suppression. - 2. Identify the subunit composition of PA proanthocyanidins and elucidate the structure-activity relationship between PA proanthocyanidins and ruminal CH₄ suppression. ## Materials & Methods #### Acacia angustissima var. hirta In vitro Gas Production **Thiolysis** #### Results #### **Thiolysis Products** ### Conclusions - 1. There is a negative linear relationship between PA inclusion in the diet and *in vitro* ruminal CH₄. - 2. PA produces 5-deoxy proanthocyanidins. - 3. 5-deoxy proanthocyanidins demonstrate reduced interflavan bond reactivity and increased resistance to degradation, which may lead to prolonged activity in the ruminant gastrointestinal tract and inhibition of CH₄ producing microbes.