# Evaluation of Airborne Hyperspectral Imaging for Use in Nitrogen Use Efficiency Phenotyping in Hard Winter Wheat

Katherine Frels<sup>1</sup>, Mary Guttieri<sup>1</sup>, Laura Dotterer<sup>2</sup>, Fares Alaboud<sup>3</sup>, Rick Perk<sup>4</sup>, Bryan Leavitt<sup>4</sup>, Brian Wardlow<sup>4</sup>, P. Stephen Baenziger<sup>1</sup>



<sup>1</sup>Department of Agronomy and Horticulture, <sup>2</sup>Doctor of Plant Health Program, <sup>3</sup>Department of Earth and Atmospheric Sciences, <sup>4</sup>CALMIT, University of Nebraska, Lincoln, NE 68583 USA

## INTRODUCTION

Pioneering new frontiers.

- Nitrogen use efficient (NUE) crops are needed due to environmental impacts and high nitrogen (N) costs.
- Traditional phenotyping methods for NUE are labor intensive and destructive.
- Canopy spectral reflectance (CSR) can be used as a proxy for physical sampling.
  - Hyperspectral proximally based CSR is most useful in small studies.
  - Airborne (AB) hyperspectral imaging systems allow CSR in large studies with large plots but usefulness with small plots is unknown.

### **OBJECTIVES**

- Test ability of airborne indices to discriminate genotypes in small plots.
- Examine relationship between airborne and proximal indices and measures of plant productivity for use in NUE phenotyping.

# METHODS

#### Image processing

All image processing completed in ENVI 4.8.

- 1. Two fields are separated by spatially subsetting the images.
- 2. Pixels with NDVI values  $\geq 0.5$  selected to remove pixels representing soil.
- 3. Band math functions for selected indices (Table 1) created and applied to subsetted images.
- 4. Index images for each field and date were layered to create four layer stacked images.
- 5. GPS vectors collected during the growing season by traversing the plot area were overlaid on the images to facilitate alignment of pixels with plot.



#### **MATERIALS**



**Figure 1:** Two winter wheat trial areas



#### Study Area

Located in near Ithaca, NE in 2012 growing season. Two winter wheat trial areas (Figure 1) 1320 plots.

- Each plot is 4 rows, 3m long with 30.5 cm spacing.
- 120 plots were check cultivars (Jagger, Settler).

#### DATA SETS

# Hyperspectral Airborne Imagery

- Two CALMIT AISA Eagle images
- Julian date 131 & 142, 2012
- 12 bands: VIS and NIR regions from 472.35 to 823.25 nm; Spectral resolution= 9.5 nm
- Spatial resolution: 0.5 m

#### Hyperspectral Proximal Sensing

- A two inter-calibrated Ocean Optics USB2000+VIS-NIR spectrometer system developed by CALMIT was used to measure downwelling and upwelling radiation simultaneously.
- Spectral Resolution: 0.4 nm; 350.02 to 1011 nm. Proximal CSR data was recorded in first replication of the trial.

#### **Figure 3:** ROI polylines on layerstack image

- 6. Polyline regions of interest (ROIs) for each planter pass were identified (Figure 3). Each ROI included 20 plots.
- Data exported from ROI were assigned to planter pass, and central pixels for each plot were identified as the three maximum pixels and central pixels were averaged.

# RESULTS

#### **Table 2.** Correlation<sup>+</sup> of proximal and airborne (AB) indices of check plots

|                                                       | Date | AB_NDVI   | AB_NDVIg  | AB_EVI    | AB_CI     |
|-------------------------------------------------------|------|-----------|-----------|-----------|-----------|
| PROX_NDVI                                             | 131  | 0.329***  |           |           |           |
|                                                       | 142  | 0.487 *** |           |           |           |
| PROX_NDVIg                                            | 131  |           | 0.368 *** |           |           |
|                                                       | 142  |           | 0453 ***  |           |           |
| PROX_EVI                                              | 131  |           |           | 0.332 *** |           |
|                                                       | 142  |           |           | 0.441 *** |           |
| PROX_CI                                               | 131  |           |           |           | 0.510 *** |
|                                                       | 142  |           |           |           | 0.471 *** |
| <sup>†</sup> Pearson <i>r</i> , *** = <i>p</i> < 0.00 |      |           |           |           |           |





#### **Measures of Plant Productivity**

- Anthesis biomass: 2 x 30cm row
- Maturity biomass: 1-m row
- Grain yield: grain threshed from maturity biomass
- Grain N yield = (grain yield) x (N concentration)



**Figure 2:** AISA 12-band placement compared with

Table 3: Correlations of airborne (AB) and proximal sensed indices at day= 131 with plant productivity parameters of check plots

|            | N   | Anthesis<br>Biomass | Maturity<br>Biomass | GrainN<br>Yield | Grain<br>Yield |
|------------|-----|---------------------|---------------------|-----------------|----------------|
| AB_NDVI†   | 120 | 0.306***            | 0.540***            | 0.497***        | 0.477***       |
| AB_NDVIg   | 120 | 0.344***            | 0.550 ***           | 0.521***        | 0.490***       |
| AB_EVI     | 120 | 0.267**             | 0.488***            | 0.447 ***       | 0.436***       |
| AB_CI      | 120 | 0.357***            | 0.556***            | 0.528***        | 0.486 ***      |
|            |     |                     |                     |                 |                |
| PROX_NDVI  | 60  | 0.607***            | 0.658***            | 0.643***        | 0.691***       |
| PROX_NDVIg | 60  | 0.493***            | 0.604***            | 0.588***        | 0.612***       |
| PROX_EVI   | 60  | 0.684***            | 0.717***            | 0.674***        | 0.770***       |
| PROX_CI    | 60  | 0.485***            | 0.649***            | 0.619***        | 0.614***       |

<sup>+</sup>Pearson *r*; \*\*, \*\*\* = *p*< 0.01, 0.001

**Table 4:** Mean airborne (AB) sensed indices at day=131 and plant productivity parameters of checks

|                                            | Jagger | Settler | SE(diff) | p(diff) |
|--------------------------------------------|--------|---------|----------|---------|
| AB_NDVI <sup>+</sup>                       | 0.679  | 0.712   | 0.012    | 0.006   |
| AB_NDVIg                                   | 0.647  | 0.662   | 0.006    | 0.018   |
| AB_EVI                                     | 1.58   | 1.71    | 0.04     | 0.001   |
| AB_CI                                      | 4.84   | 5.14    | 0.22     | 0.025   |
| Plant productivity (g m <sup>-1</sup> row) |        |         |          |         |
| Biomass: Anthesis                          | 124    | 175     | 5        | < 0.001 |
| Biomass: Maturity                          | 248    | 336     | 10       | < 0.001 |
| Grain N Yield                              | 2.79   | 3.62    | 0.11     | < 0.001 |
| Grain Yield                                | 96     | 143     | 6        | < 0.001 |

#### **Table 1:** Indices used with AISA band formula

| Acryonym | Index                                           | Formula                                       | AISA Formula                         | Reference              |
|----------|-------------------------------------------------|-----------------------------------------------|--------------------------------------|------------------------|
| NDVI     | Normalized<br>difference<br>vegetation<br>index | $\frac{R_{890} - R_{670}}{R_{890} + R_{670}}$ | Band 12 – Band 6<br>Band 12 + Band 6 | Rouse et<br>al. (1973) |
|          | Green                                           |                                               |                                      |                        |

# CONCLUSIONS

Airborne CSR imaging can discriminate genotypes in small plots; therefore airborne CSR indices can be used as a



high throughput tool to measure NUE traits.

Improvements in data capture, analysis,

and use of ground control points are

expected to improve correlations with

proximal indices and plant productivity

parameters.

**CONTACT:** katherine.frels@gmail.com

**ACKNOWLEDGEMENTS:** Research supported by USDA-NIFA Triticeae-CAP grant (2011-68002-30029)

STATISTICS: SAS Institute (2010). Cary, NC. SAS Version 9.3

