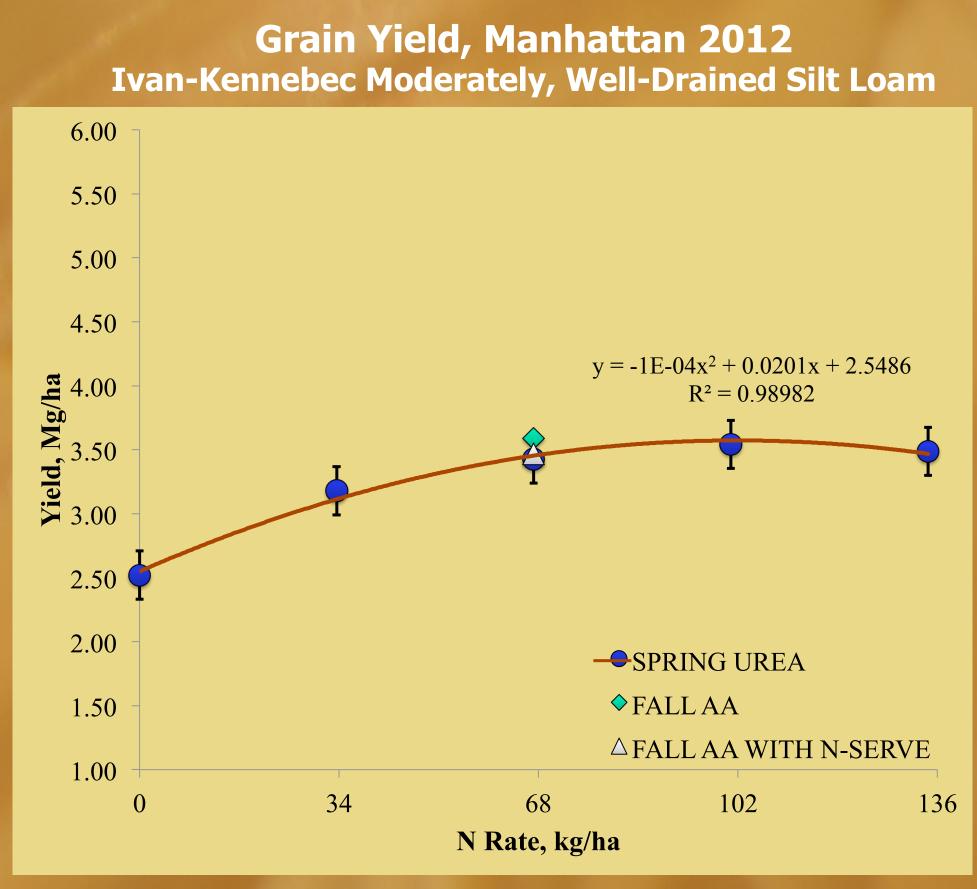
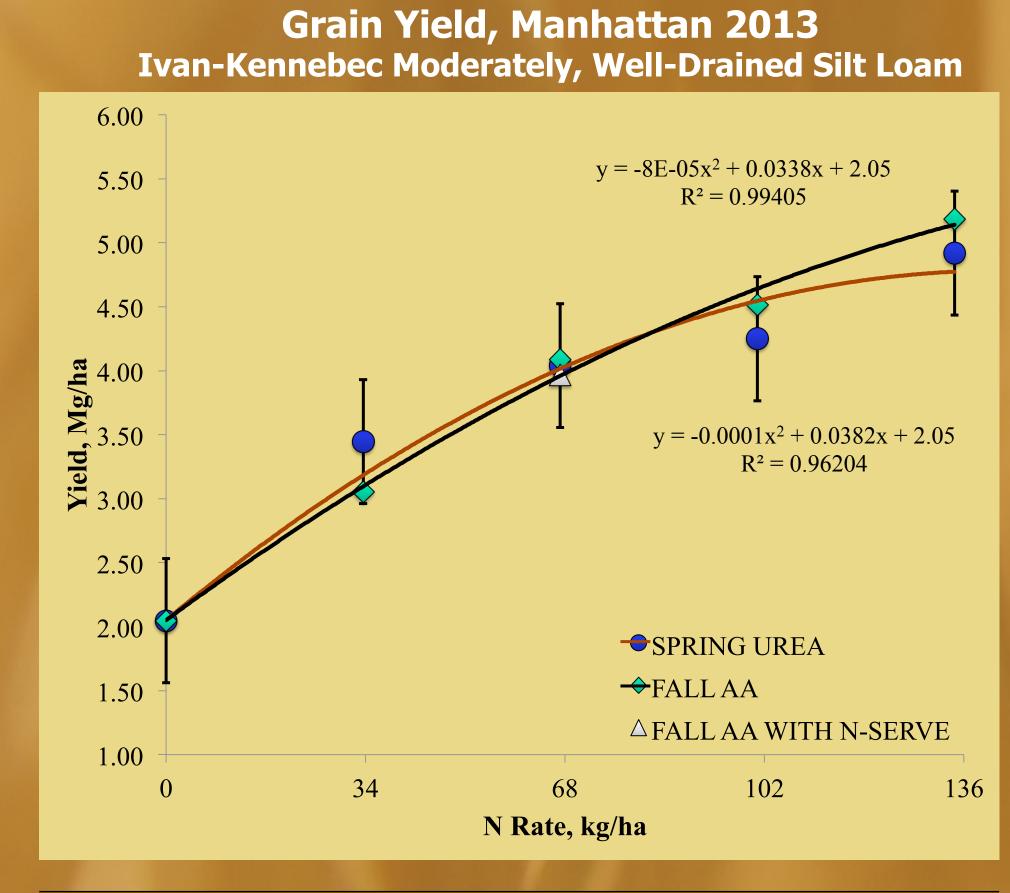
Nitrogen Management of Winter Wheat in Kansas

Timothy J. Foster and David B. Mengel Department of Agronomy, Kansas State University, Manhattan, KS, USA Email: tjfoster@ksu.edu


Objectives

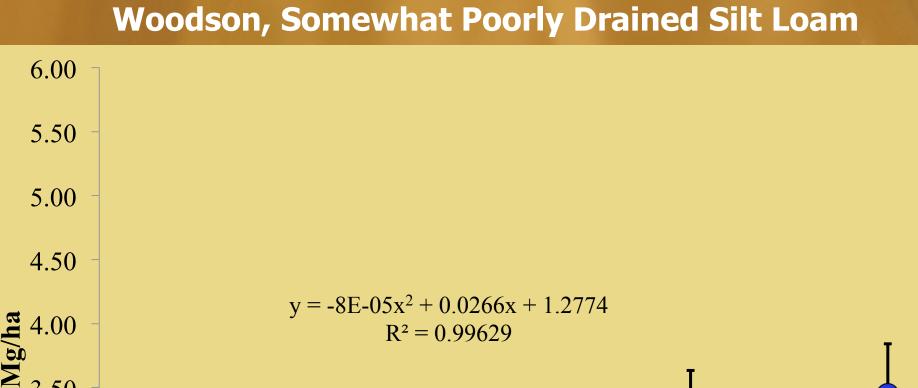
- > Compare the practice of fall pre-plant application of anhydrous ammonia (AA) to spring top-dress application of urea at green-up (Feekes 4).
- > Determine the effectiveness of a nitrification inhibitor (N-Serve) applied with AA for the improvement of nitrogen use efficiency (NUE) and yield.


Materials and Methods

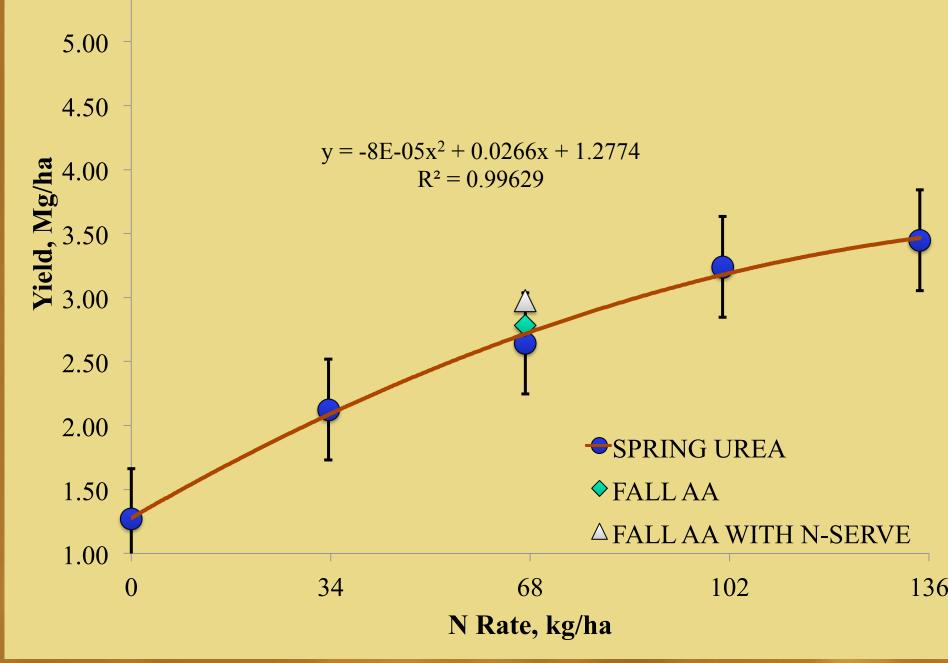
- > The study took place at the KSU Agronomy North Farm, Manhattan; Kansas River Valley Experiment Field, Rossville, Silver Lake; and East Central Experiment Field, Ottawa, during the 2011 – 2013 growing seasons.
- > The plots were set up in a randomized complete block design with four replications.
- > Treatments consisted of 0, 34, 67, 101, and 134 kg ha⁻¹ N rates in the fall as AA and the spring as urea. N-Serve (nitrapyrin) was applied with the 67 kg ha⁻¹ N rate at the recommended rate of 2.3 L ha⁻¹. N-Serve was injected directly into the AA stream prior to the manifold.
- > For all locations, the previous crop was soybeans and the wheat was planted no-till. All AA applications were applied using a JD 2510 HSLD applicator on 50 cm spacing at a depth of 10 cm. N rates were adjusted by changing travel speeds. The unit was calibrated at 11.3 km hr⁻¹ for a 67 kg ha⁻¹ N rate.
- > Soil samples were taken by block at each location to the following depths: 0-15 cm, 15-30 cm, 30-60 cm, and 60-91 cm. Soil pH, P, K, SOM, Zn, S, Cl, NH₄, and NO₃ were measured on the 0-15 cm samples, and NH₄, NO₃, S, and CI were measured on all other samples
- > Flag leaf samples were collected at Feekes 10.1 growth stage.
- > Whole plant samples were collected at Feekes 11.1 growth stage.
- > Grain samples were collected for the determination of yield, test weight, and protein content. Yields were adjusted to 125 g kg⁻¹ moisture.
- > NUE by Recovery was calculated as NUE = (Total N Uptake Fertilized Treatment — Total N Uptake Unfertilized Check Plot) / Total N Applied

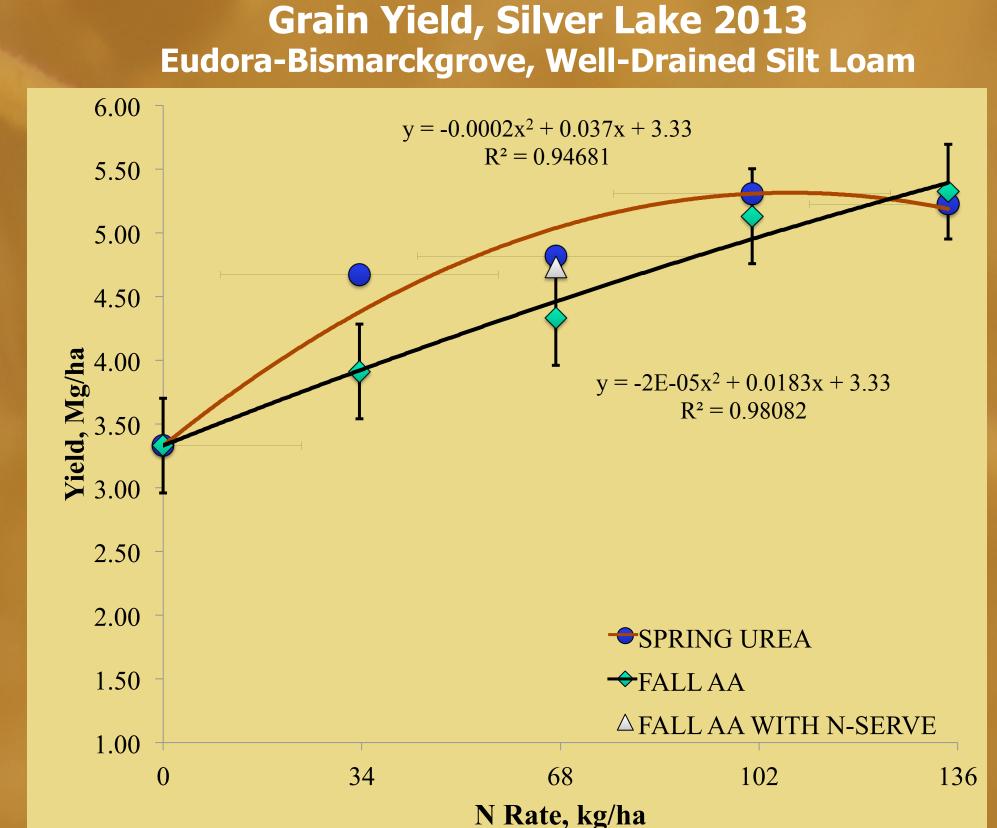
Results

Manhattan 2012 Contrasts	N Uptake (kg/ha)	NUE (%)	Yield (Mg/ha)
Control vs N Applied	(30.1)**	NA	(0.46)**
Fall 67 N vs Spring 67 N	4.5	5.3	0.08
Fall N with N-Serve vs Spring 67 N	(8.4)	(11.5)	0.02
Fall 67 N vs Fall N with N-Serve	13.0	16.8*	0.06
* indicates significance <0.10, ** indicates significance <0.01		S <i>F</i>	AS 9.3 Proc Mixe

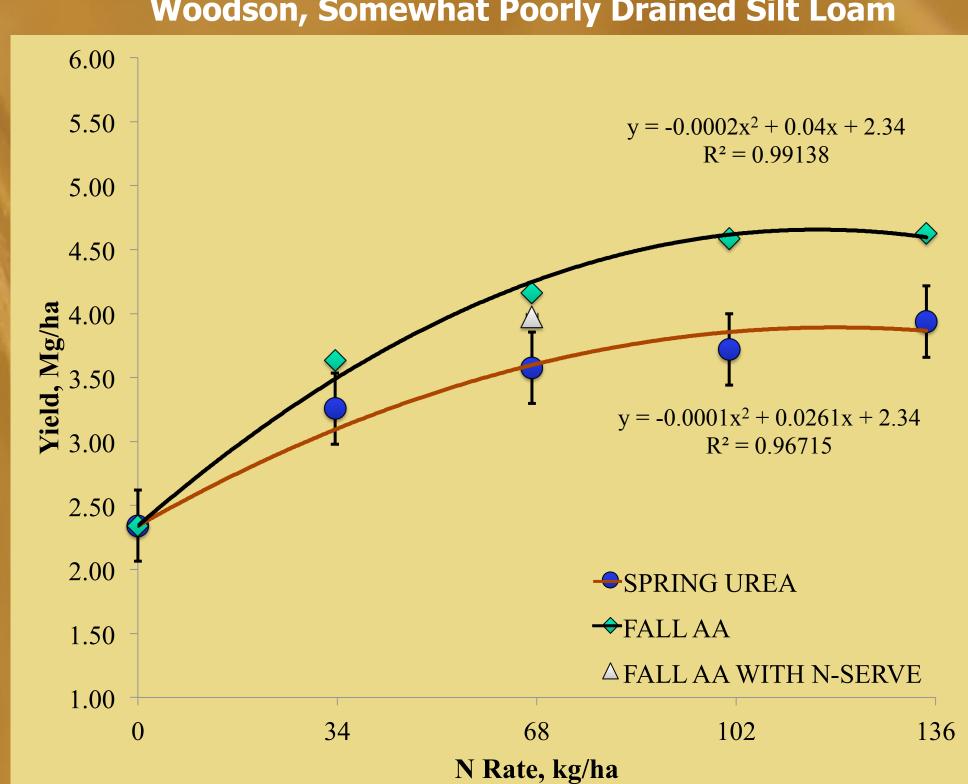

Manhattan 2013 Contrasts	N Uptake (kg/ha)	NUE (%)	Yield (Mg/ha)	
Control vs N Applied	(38.7)**	NA	(1.07)**	
Fall N vs Spring N	9.4**	11.1**	0.02	
Fall 67 N vs Spring 67 N	8.0	10.5	0.02	
Fall N with N-Serve vs Spring 67 N	16.9*	21.3*	(0.03)	
Fall 67 N vs Fall N with N-Serve	(8.9)	(10.9)	0.05	
* indicates significance <0.10, ** indicates significance <0.01		SAS 9.3 Proc Mixed		

Results Cont.


Failed Location, Rossville 2012 **Eudora, Well-Drained Silt Loam**


Rossville 2012 Contrasts	N Uptake (kg/ha)	NUE (%)	Yield (Mg/ha)		
Control vs N Applied					
Fall 67 N vs Spring 67 N	NI o I	No Data Analyzed			
Fall N with N-Serve vs Spring 67 N	NO L				
Fall 67 N vs Fall N with N-Serve	-				
* indicates significance < 0.10. ** indicates significance	ance <0.01		AS 9.3 Proc Mixed		

Grain Yield, Ottawa 2012



Ottawa 2012 Contrasts	N Uptake (kg/ha)	NUE (%)	Yield (Mg/ha)
Control vs N Applied	(40.2)**	NA	(0.79)**
Fall 67 N vs Spring 67 N	5.7	7.5	0.07
Fall N with N-Serve vs Spring 67 N	11.7	14.8	0.17**
Fall 67 N vs Fall N with N-Serve	(5.3)	(7.2)	(0.09)
* indicates significance <0.10, ** indicates significance <0.01			AS 9.3 Proc Mixed

Silver Lake 2013 Contrasts	N Uptake	NUE (%)	Yield (Mg/ba)
	(kg/ha)	(%)	(Mg/ha)
Control vs N Applied	(36.7)**	NA	(0.75)**
all N vs Spring N	1.1	2.9	(0.17)**
all 67 N vs Spring 67 N	(1.8)	(2.0)	(0.24)**
all N with N-Serve vs Spring 67 N	(3.4)	(4.4)	(0.04)
all 67 N vs Fall N with N-Serve	1.6	2.4	(0.20)*
indicates significance <0.10, ** indicates signif	icance <0.01	SA	AS 9.3 Proc Mixed

Grain Yield, Ottawa 2013 Woodson, Somewhat Poorly Drained Silt Loam

Ottawa 2013 Contrasts	N Uptake	NUE	Yield	
	(kg/ha)	(%)	(Mg/ha)	
Control vs N Applied	(38.5)**	NA	(0.80)**	
all N vs Spring N	17.6**	18.6**	0.31**	
all 67 N vs Spring 67 N	19.3**	25.0**	0.29**	
all N with N-Serve vs Spring 67 N	17.0**	22.0**	0.19**	
all 67 N vs Fall N with N-Serve	2.3	3.0	0.09	
indicates significance <0.10, ** indicates significance <0.01		SAS 9.3 Proc Mixed		

Conclusions

- > Timing Fall AA vs. Spring Urea
 - > Variable based on soil properties and tillage history.
 - > On well drained soils, prone to leaching, spring applications of urea appear to be more effective.
 - > On medium textured soils, with limited potential for leaching or denitrification, no differences were observed between fall and spring applications in yield, however knifed AA increased N uptake and NUE.
 - > On poorly drained soils with potential for N loss from denitrification and volatilization, fall knifed AA applications yielded higher than spring topdressed urea, especially under long-term no-till.
- > Use of a nitrification inhibitor with ammonia.
 - > A good risk management tool for marginal sites.
- > Increases the range of opportunity for fall applications.