The opportunities elastic waves offer to soil science
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We demonstrate the potential of a non-invasive measurement technique for the in situ monitoring of soil physical properties in the field. When soils are regarded as porous and elastic media, sub-surface wave propagation
can be indicative of the soil status. Such propagation can be initiated by airborne sound through acoustic-to-seismic (A-S) coupling. Measurements of near-surface sound pressure and acoustically induced soil particle
motion can be exploited to estimate the pore-related and elastic properties of soils. Measured data were compared with model predictions based on wave propagation in layered homogeneous isotropic poroelastic media
described by linear Biot-Stoll theory. Soil properties were estimated through an optimization process minimizing the differences between the measurements and predictions. The fitted soil characteristics are air
permeability, porosity, P-/S-wave speeds (related to bulk and rigidity moduli) and a loss factor. Layer depth was also estimated for multi-layered samples.
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