Evaluation of hybrid sweet sorghum as a biofuel crop for the southeast USA Joseph E. Knoll and William F. Anderson, USDA-ARS Crop Genetics and Breeding Research Unit, Tifton, GA, USA

Introduction

Sweet sorghum (*Sorghum bicolor* (L.) Moench.) has potential as a multi-purpose biofuel crop in the southeast USA. The sugars from the juice can be easily fermented into ethanol or used to produce other chemicals, while the bagasse could be burned in boilers for energy or used for cellulosic ethanol. The grain and leaf portions could be utilized as livestock feed. The crop is more tolerant of heat and drought than corn (*Zea mays* L.), and requires less N fertilizer. Despite its advantages, all current cultivars are pure lines that produce little seed on very tall plants, which is a major limitation to development of a sweet sorghum-based biofuel industry. There is a need to develop hybrid seed production on short-statured seed parents. Hybrids should also be more productive than pure lines. A test was conducted at Tifton, GA in 2012 to assess the potential for heterosis and combining ability in some of the currently-available sweet sorghum germplasm.

Materials and Methods

A Design II mating design was constructed using three male-sterile (A-line) seed parents as females and 19 males to generate 57 hybrids. The males represent a range of maturities, and include landraces, heirlooms, and improved cultivars. In 2012 all the hybrids, male parents, and the male-fertile (B-line) versions of the females were planted in a randomized complete block design with two replications. Each plot consisted of two rows. One row was used for sampling, while the other was harvested for total biomass at the end of the test. Over the course of the growing season, juice BRIX was sampled at regular intervals to monitor sugar production. BRIX was measured using a hand-held digital refractometer. At harvest, a sample of three stalks was taken from each plot, and these were separated into leaves, stalks, and panicles. The juice was extracted from the stalks with a roller mill and was quantified. Other traits measured included plant height, lodging score, and days to anthesis.

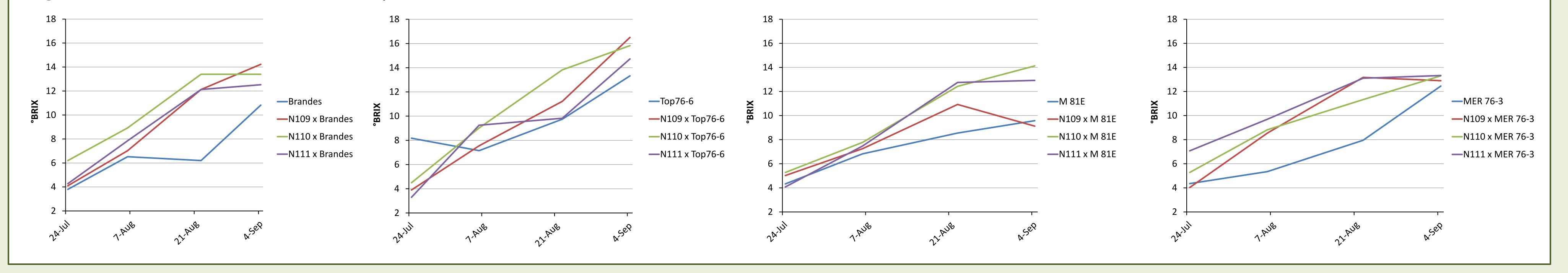
Results

Table 1. Days to anthesis for threefemales, 19 males, and 57 hybrids. Earliermaturities are shaded green, latermaturities are shaded red.

Days to Anthesis		Females			
		N109	N110	N111	
Males		65	65	70	
COLLIER	62	61	63	62	
TRACY	66	57	58	54	
LEOTI-PELTIER	66	62	58	64	
EARLY FOLGER	67	62	62	61	
REX	67	63	61	67	
N98	68	64	63	66	
N100	68	62	64	60	
PI 250898	70	62	59	59	
SUGAR DRIP	71	63	60	60	sp
SACCALINE	72	67	59	62	Hvbrids
84-5626	75	67	62	61	Í
ATLAS	76	67	65	71	
ISIDOMBA	79	70	65	70	
RG	92	74	75	72	
MER 76-3	93	74	75	74	
PI 643017	94	74	74	76	
M 81E	100	78	80	80	
BRANDES	106	84	78	85	
TOP 76-6	108	88	88	92	

Table 2. Mature plant height for threefemales, 19 males, and 57 hybrids. Tallerplants are shaded green, shorter plants areshaded red.

Plant Height (cm)		Females			
		N109	N110	N111	
Males		105	188	194	
COLLIER	189	203	209	235	
EARLY FOLGER	190	202	175	188	
ATLAS	192	213	230	242	
N98	196	168	204	206	
N100	205	191	175	182	
LEOTI-PELTIER	206	200	177	227	
TRACY	217	208	184	210	
REX	237	222	216	197	
SACCALINE	242	221	189	174	ids
84-5626	244	201	219	218	Hybrids
SUGAR DRIP	269	227	239	224	Í
PI 250898	270	214	214	232	
ISIDOMBA	273	262	243	273	
BRANDES	274	257	295	300	
MER 76-3	301	281	283	278	
RG	302	303	296	321	
TOP 76-6	316	321	335	349	
PI 643017	320	303	279	299	
M 81E	357	322	310	330	


Table 3. Lodging scores for three females, 19 males, and 57 hybrids. 0 = no lodging, 5 = completely lodged. Better scores are shaded green, worse scores are shaded red.

Lodging Score (0-5)		Females			
		N109	N110	N111	
Males		0.0	3.0	0.5	
COLLIER	0.5	1.0	4.0	0.5	
ISIDOMBA	0.5	0.0	2.0	1.5	
N100	0.5	1.0	0.5	0.5	
ATLAS	1.0	1.0	1.0	2.0	
BRANDES	1.0	0.0	1.0	1.5	
TOP 76-6	1.0	1.0	2.0	1.5	
M 81E	1.5	0.0	2.5	2.5	
N98	1.5	0.0	1.0	1.0	
RG	1.5	1.0	2.0	1.5	ds
MER 76-3	2.0	0.5	2.0	0.0	Hybrids
REX	2.0	1.0	1.5	3.0	Í
84-5626	2.5	2.5	2.5	0.5	
EARLY FOLGER	2.5	0.0	2.5	2.5	
LEOTI-PELTIER	3.0	2.0	1.0	3.0	
PI 250898	3.0	1.5	4.0	3.0	
SUGAR DRIP	3.5	3.0	2.0	1.5	
SACCALINE	4.0	4.0	2.5	1.0	
PI 643017	4.5	3.5	4.5	4.0	
TRACY	4.5	1.0	5.0	4.5	

Table 4. Dry biomass yield for threefemales, 19 males, and 57 hybrids. Higheryields are shaded green, lower yields areshaded red.

Biomass (kg/ha)		Females			
		N109	N110	N111	
Males		3028	6358	8237	
COLLIER	3255	6315	8508	6336	
TRACY	3998	10673	5285	5412	
LEOTI-PELTIER	5386	4575	5252	4896	
SUGAR DRIP	5397	7106	6880	5568	
PI 643017	5511	10006	10586	7434	
SACCALINE	5774	7393	6554	4051	
EARLY FOLGER	6509	5687	5344	4587	
REX	7082	6722	8331	4924	
N100	7433	6736	6564	5073	ds
ATLAS	7505	8058	6816	6471	Hybrids
N98	7773	4595	7181	7721	Ĥ
84-5626	7826	7460	7680	5707	
PI 250898	9163	6711	6506	8700	
ISIDOMBA	9637	10685	7137	9245	
RG	12870	14274	16113	13723	
MER 76-3	14821	12362	13281	11904	
BRANDES	15002	13849	9740	13756	
M 81E	16171	15145	16189	13378	
TOP 76-6	20753	14202	13201	15230	

Figure 1. BRIX curves for selected males and their hybrids with N109, N110, and N111.

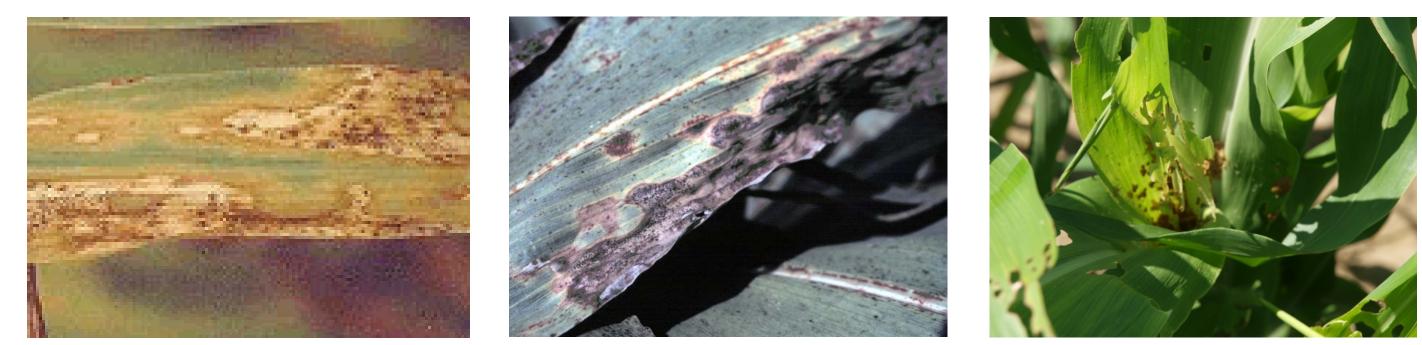


Figure 2. Symptoms of
leaf anthracnose on
sorghum.Figure 3. Symptoms of
rough leaf spot on
sorghum.Figure 4. Fall
armyworm damage on
sorghum.

Conclusions

In this study plant height and biomass of hybrids were generally similar to that of their male parents. However, most hybrids matured earlier than their male parent, and some showed better resistance to lodging. Female parent N109 A appears to have good general combining ability for lodging resistance. Earlier maturity, resistance to lodging, and ease of harvesting seed are

clear advantages of producing hybrid sweet sorghum seed, and this seed could be produced on short seed parents, such as N109 A, using currently-available cultivars as pollen parents. In this test, the best entries produced sugar yields around 2,000 kg ha⁻¹. This could be converted to around 1,100 L ha⁻¹ of ethanol. Improvements in resistance to diseases, such as anthracnose (*Colletotrichum sublineolum*, Fig. 2) and rough leaf spot (*Ascochyta sorghina*, Fig. 3), and resistance to insects such as fall armyworm (*Spodoptera frugiperda*, Fig. 4) are still needed in this crop.