Effect of Biochar on Soil Physical Characteristics: Water Retention and Gas Transport in a Sandy Loam

(1) Dept. of Agroecology, Aarhus University, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele, Denmark. (2) Dept. of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark. (3) Dept. of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

Introduction

Biochar, as a soil amendment, has received much attention. However, little is known about its effect on soil structure

Objectives

- To observe variations in soil water retention after biochar application
- To investigate gas transport characteristics under a series of matric potentials

Methods

Field

4 control (C) plots, 4 biochar (BC) treated plots $(6 \times 8 \text{ m})$

Biochar

Birch pyrolysis at 400°C Dose = $20 \text{ t } \text{ha}^{-1}$

Sampling 5 soil cores(100 cm³) per plot

Water retention

Wet region

Soil cores: sand box + ceramic plate apparatus Matric potentials, ψ (pF 1.0 – 3.0) $pF = log(-\psi, cm H_2O)$

 Dry region Bulk soil: WP4-T High pF values (4.0 – 6.8)

Zhencai Sun (1), P. Moldrup (2), E. W. Bruun (3), L. Elsgaard (1), and L.W. de Jonge (1)

Ca	mpbell b	Η	ep m ³ m ⁻³
	9.1	0.30	0.057
	8.2	0.32	0.055
	_	_	_

Pore structure indexes

Conclusions

- Biochar increased soil water retention.
- Biochar at the same time markedly enhanced air-filled porosity and gas transport parameters and likely also changed/improved pore network structure as inferred from the X and P indexes.

Acknowledgements

The work was funded by the Soil Infrastructure, Interfaces, and Translocation Processes in Inner Space (Soil-it-is) project from the Danish Research Council for Technology and Production Sciences.

References

Kawamoto, K., P. Moldrup, P. Schjønning, B.V. Iversen, T. Komatsu, and D.E. Rolston. 2006. Gas transport parameters in the vadose zone: Development and tests of power-law models for air permeability. Vadose Zone J. 5:1205-1215

AARHUS UNIVERSITY DEPARTMENT OF AGROECOLOGY