

JNIVERSIT

Diffusivity-Based Characterization of Plant Growth Media for Earth and Space

Chamindu Deepagoda^{1*}, Per Moldrup¹, Scott Jones², Toshiko Komatsu³, Ken Kawamoto³, Dennis E. Rolston⁴, and L.W. de Jonge⁵ ¹ Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, DENMARK (*dc@bio.aau.dk) ² Dep. of Plants, Soils and Climate, Utah State University, Logan, UT 84322-4820 ³Graduate School of Science and Engineering, Saitama University, JAPAN ⁴Dept. of Land, Air, and Water Resources, University of California, Davis, USA

⁵Dept. of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, P Box 50, DK-8830 Tjele, Denmark

Introduction

Growing plants in controlled volumes on the Earth and in Space (e.g., in a space station) is challenging due to limited access to essential plant needs (e.g., air, water, nutrients)

These essential plant needs are closely linked to the growth media properties.

Oxygen and nutrient movement in root zone occurs mainly by diffusion, and controlled by gas diffusion coefficient, D_p (cm² s⁻¹) and solute diffusion coefficient,

zone

Results and Discussion

Water Retention and Pore Size Distribution

 All the media are bimodal and showed strong two-region characteristics

Intra-aggregated pores (Region 2)

- $D_{\rm s}$ (cm² s⁻¹), respectively.
- In Space, reduced gravity plays an important but poorly understood role on water distribution in growth media, and thereby affects gas and liquid diffusion in root zone (Jones et al., 2003).
- This study presents a diffusivity-based characterization of four growth media to be used in Earth and Space environments.

Materials and Methods

Materials and Properties:

Medium	Particle size mm	Bulk density g cm ⁻³	Total porosity cm ³ cm ⁻³	EGME SA m² g⁻¹
Pumice	3.2-9.5	0.36	0.85	13.9
Turface	2.0-5.0	0.62	0.75	101.4
NASA-	0.25-1.0	0.97	0.61	94.2
Zeoponic				
Profile	0.25-0.85	0.65	0.74	95.8

> Methods:

Oxygen diffusivity : One-chamber method (Taylor, 1949)

pores (Region 1)

Inter-aggregated

 High total porosity and low dry bulk density provide favorable conditions to plant growth

Gas Percolation Threshold Vs. Particle Size

- > Gas percolation threshold, ε_p (cm³ cm⁻³):
 - Air-filled pore space below which D_p remains zero due to pronounced water blockage effect.
- > Particle size controls the mean pore size and also the percolation threshold thereby affects D_p .
- Strong linear relation ($r^2 = 0.98$) was observed between mean particle diameter (D_m) and ε_p , which was successfully used for predicting ε_p in later studies

Diffusivity Models

> Oxygen diffusivity

• Region 1:

- D_o = Gas diffuson coefficient in free air ε_{in} = Inactive pore space (cm³ cm⁻³)
- Solute diffusivity

- Region 2: $\frac{D_p}{D_0} = \alpha_1 + \alpha_2 \left[\frac{1}{2} + \alpha_2 \right]$ $\alpha_2 = \frac{D_p}{D_0} \left[-\frac{L}{L} + \frac{L}{L} \right]$
 - ε_p = Percolation threshold (cm³ cm⁻³) Φ_1 = Inter-aggregate porosity (cm³ cm⁻³) Φ = Total porosity (cm³ cm⁻³)

Critical Windows of Diffusivity

Based on the critical (plant limiting) conditions for oxygen and nutrients in root zone *in between irrigations*, the concept of Critical Windows of Diffusivity (CWD) to evaluated media performance under critical steady state conditions.

The CWD is defined between the region boundary and the critical diffusivity values for oxygen and nutrients.

Critical diffusivity values:

	Oxygen	Nutrients
Earth	$D_{\rm p}/D_{\rm o} = 0.02$	$D_{\rm s}/D_{\rm l} = 0.01$
Space	$D_{\rm p}/D_{\rm o} = 0.04$	NA

Earth		Space	
(1- <i>g</i>)		(0.37- <i>g</i>)	
Oxygen	Nutrient	Oxygen	
window	window	window	

• Determined in analogous to dielectric permittivity

 D_l = solute diffusion coefficient in free water $E(\theta)$ = dielectric permitivity

 E_s = dielectric permitivity of solid phase

 E_b = dielectric permitivity of bulk water

Acknowledgement

This study was part of the project Gas Diffusivity in Intact Unsaturated Soil ("GADIUS") and the large framework project Soil Infrastructure, Interfaces, and Translocation Processes in Inner Space ("Soil-it-is"), both from the Danish Research Council for Technology and Production Sciences. This study was in part supported by the Japan Science and Technology Agency (JST) in the Core Research Evolutional Science and Technology (CREST) project. Profile showed best performance with largest windows

References

- Chamindu Deepagoda, T.K.K., P. Moldrup, M. P. Jensen, S. B. Jones, L. W. de Jonge, P. Schjønning, K. Scow, J. W. Hopmans, D. E. Rolston, K. Kawamoto, and T. Komatsu. 2012. Diffusion aspects of designing porous growth media for earth and space. Soil Sci. Soc. Am. J. 75:1564-1578
- Currie, J.A. 1960. Gaseous diff usion in porous media: 1. A non-steady state method. Br. J. Appl. Phys. 11:314–317
- Currie, J.A. 1984. Gas diffusion through soil crumbs: The effects of compaction and wetting. J. Soil Sci. 35:1–10.
- Jones, S.B., D. Or, and G.E. Bingham. 2003. Gas diffusion measurement and modeling in coarse-textured porous media. Vadose Zone J. 2:602–610
- Taylor, S.A. 1949. Oxygen diffusion in porous media as a measure of soil aeration. Soil Sci. Soc. Am. Proc. 14:55–61.