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Introduction 

Oxygen and nutrient movement in root zone occurs 

mainly by diffusion, and controlled by gas diffusion 

coefficient, Dp (cm2 s-1) and solute diffusion coefficient, 

Ds (cm2 s-1), respectively.  

Growing plants in controlled volumes on the Earth and in Space ( e.g., 

in a space station) is challenging due to limited access to essential 

plant needs (e.g., air, water, nutrients) 

In Space, reduced gravity plays an important but poorly understood 

role on water distribution in growth media, and thereby affects gas 

and liquid diffusion in root zone (Jones et al., 2003). 

This study presents a diffusivity-based characterization of four growth 

media to be used in Earth and Space environments. 

 These essential plant needs are closely linked to the 

growth media properties. 

 Materials and Properties:  

• Oxygen diffusivity  : One-chamber method (Taylor, 1949) 

Materials and Methods  

Medium 

Particle 

size     

mm 

Bulk 

density 

g cm-3 

Total 

porosity 

cm3 cm-3 

EGME SA 

m2 g-1 

Pumice 3.2-9.5 0.36 0.85 13.9 

Turface 2.0-5.0 0.62 0.75 101.4 

NASA- 

Zeoponic 

0.25-1.0 0.97 0.61 94.2 

Profile 0.25-0.85 0.65 0.74 95.8 

 Solute diffusivity  

• Determined in analogous to dielectric permittivity 
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)( E (θ) = dielectric permitivity    

Es= dielectric permitivity of solid phase  

Dl = solute diffusion coefficient  in free water 

Eb= dielectric permitivity of bulk water 

 Oxygen diffusivity  

Do = Gas diffuson coefficient in free air 

εin = Inactive pore space (cm3 cm-3)  
Φ1 = Inter-aggregate porosity (cm3 cm-3)  

εp = Percolation threshold (cm3 cm-3)  

Φ = Total porosity (cm3 cm-3)  
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• Region 1: • Region 2: 
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 Water Retention and Pore Size Distribution 

 Methods: 

• All the media are bimodal and 

showed  strong two-region 

characteristics 

• High total porosity and low dry 

bulk density provide favorable 

conditions to plant growth  

Critical Windows of Diffusivity 

 Based on the critical (plant 

limiting) conditions for oxygen 

and nutrients in root zone in 

between irrigations, the concept 

of Critical Windows of Diffusivity 

(CWD) to evaluated media 

performance under critical 

steady state conditions. 

Earth  

(1-g) 

Space 

(0.37-g) 

Oxygen 

window 

Nutrient 

window 

Oxygen 

window 

Pumice 0.054 0.331 0 

Turface 0.096 0.266 0.087 

Zeoponic 0.200 0.073 0.170 

Profile 0.207 0.216 0.108 

 The CWD is defined between 

the region boundary and the 

critical diffusivity values for 

oxygen and nutrients. 

Critical diffusivity values: 

 Gas Percolation Threshold Vs. Particle Size 

References 

 Gas percolation threshold, εp (cm3 cm-3): 

• Air-filled pore space below which Dp 

remains zero due to pronounced water 

blockage effect. 

 Particle size controls the mean pore size 

and also the percolation threshold thereby 

affects Dp. 

 Strong linear relation (r2 = 0.98) was observed 

between mean particle diameter (Dm) and εp, 
which was successfully used for predicting εp in 

later studies 
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Oxygen Nutrients 

Earth Dp/Do = 0.02 Ds/Dl = 0.01 

Space Dp/Do = 0.04  NA 

Profile showed best performance 

with largest windows 


