Introduction

In Kansas, agriculture continues to be a significant contributor to the state's economic well-being with rainfed production (e.g sorghum and wheat crops) contributing its share. Agricultural production system is inherently a risky activity in rainfed areas where uncertainty in agroclimatic conditions affects production and profits. Understanding the role of risk and risk aversion in these systems, by reliable prediction of the uncertain variables is needed to develop technological and policy interventions that help reduce risk. Adaptation strategies such as synchronization of dates of cultivation practices and developing crop varieties with the changing climate have been used to reduce risk. Although the importance of risk has been widely recognized by researchers and policymakers, there is a dearth of quantitative information on risk.

Objective

To provide quantitative information on uncertain agro meteorological indicators (AMI) such as growing season length (GSL), last spring freeze (LSF) and first fall freeze (FFF) used in many adaptation strategies to reduce risk.

Data Used

LSF, FFF, and GSL calculated from 23 centennial stations spread across Kansas (Figures $1 \& 2$).

Definitions of indices

Frost or freeze days is defined as a day with a minimum temperature (Tmin) Tmin $<0{ }^{\circ} \mathrm{C}$
Number of frost days (nFDs) is the number of days with frost. Last spring freeze (LSF) is the last day in March through May with Tmin $<0^{\circ} \mathrm{C}$ for the last time until fall
First fall freeze (FFF) is the day in September through November with $\mathrm{Tmin}<0^{\circ} \mathrm{C}$ for the first time since spring
Growing season length (GSL) is based on the onset of spring and fall. The number of days between the LSF and the FFF of the same year is used to determine GSL.

Methodology

Risk Analysis is based on probability distribution function (PDF's). The cumulative PDF (CDF) helps to identify and quantify the uncertainties associated with LSF, FFF \& GSL. It gives the proportion less than X .

Steps in estimating empirical CDF:

1. Sort the observation into ascending order $\mathrm{X}_{(1)}$ to $\mathrm{X}_{(\mathbb{N})}$
2. Calculate CDF $[F(x)]$:

$$
\mathrm{F}(\mathrm{X})= \begin{cases}0 & -\infty<x<\mathrm{x}_{1} \\ \frac{i}{N} & x_{i} \leq x<x_{(i+1)} \\ 1 & x_{n} \leq x<\infty\end{cases}
$$

3. Exceedence probability is calculated as $1-F(X)$
4. CDF is used for LSF \& GSL; Exceedence probability is used for FFF.

Fig. 1. Kansas is divided into 9 climate regions with gradients running from north to south and east to west. Long-term weather stations used for analysis are denoted within each climate division

Fig. 2: Probability plots for one of the 23 centennial station results (Ashland). Cumulative probability plot of LSF \& GSL (1 \& 3). Exceedance probability plot of $\operatorname{FFF}(2)$. For each Individual plot the black dots correspond to the years from 1980-2009 the red squares correspond to the years from 1950-1979 and the green diamonds correspond to the years form 1920-1949.

50\% probability level					
LsF:May	LSF: May 2	LsF:May 1	LsF:Aprit 25	LsF:Apilil 17	LSF:April 11
fFF:Oct9	FFFF:OCt 10	FFF:OCt7	FFF:Oct 11	FFF:00t 17	
GSL213	ast:212	GSL213	ast:220	GSL:226	ast:23
LsF: April	LSF:April 22	2 Ls:April 26	LSF:April	LSF:April 19	Lsf:Apr
fFF:Octs	FFF:OOCt 17	FFF:OCt 13	FFF:Oct 21		
Gst:213	ast:222	GSL-218	ast-227	Gst-224	
LSF:APril 23	LsF:April 17	7 LSF:Aprit 16	LsF:April 16	LSF: Apris	LsF:April 10
fFFF:Oct 17	FFF:Ot2 25	FfF:Oct 24	FFF:Oct 22	FFF:00t 29	
cs		ast:227	ast:228	ast:237	ast
LSF:April 20		LSF:Aprit 13	LsF:Aprit 10	LSF:April 10	LsF:April 9
			FFF:Oct 25		
		ast:231	Gst:233	GSL:	
90\% probability level					
6	LsF:May 17	7 LSF:May 16	LSF:May 12	LSF:May 2	LsF:A
SL:230	GSL:229	GSL:228	GsL:233	GSL:239	GSL:245
May 16	6 LSF:May 7	LsF:May 14	4 Ls:May 3	LSF:May 9	LSF:M
fFF:Sep 21	fFF:Sep 29	FFF:Sep 26	ffF:Oct1	FFF:Sept 29	fFF:OCI
GSL226	GSL:237	GSLL232	ast:242	ast239	ast:2
E:May 11	LSF:May 3	LSF: May	LSE:May 7	LSF:April 21	LSF:April 26
FFF:Sep 29	fFF:Oct 10	fFF:Oct 6	fFF:OCt 3	fFF:OCt 11	FFF:O
csL:236	as	GSLL243	ast:241	cst:252	ost:249
LSF:May 4		LSF:May 1	-sF:April	LSF:April	LSF:April 23
fFF:Ot 3		FFF:Oct 8	fFF:Ot19	FFF:OCt7	fFF
ast.240		GSL:24	ast:248	CSLL248	GSL:248

75\% probability level					
LsF:May	LSF: May 12	LsF:May 11	LSF:May 3	LSF: Apri24	
FFF:Oct1	FFF:Sept 29	FFF:SPe 27	IFF:Oct5	FFF:Oct9	
GSL: 222	GSL221	GSL: 221	GSL: 228	ast:2	
LSF: May	LSF: Aprilio	LsF:May	L5F:Apri126	LSF:April 29	
FFFFSep 28	ffF:Oct9	fFF:Oct 6	FFF:Oct 14	fFF:Octi	FFF:O
sst:220	GSL:229	GSL227	GSL:234	asL:232	
Ls	LSF:Appril	LsF:April 27	LSF:April 27	LsF:	
ffF:O	t 16	fff:oct 15	fef:oct 13	FFF:	
GSL		GSL:236	GSLL234	GSL245	GSL:
LS		LSF:April	LSF:April	SF:A	
GSL231		cst-239	CsL:243	CsL-243	

Table 1.50\%;75\%;90\% probability levels of LSF, FFF and GSL for station. Each value also corresponded to the actual day of occurrence for LSF and FFF whereas, for GSL the value represents the duration. The location of the box represents the
approximate geographical location

LSF: 91(4/11) FFF: 246(9/9) GSL:185	LSF: 92(4/2) FFF: 255(9/12) GSL: 185	LSF: 94(4/4) FFF: $246(9 / 3)$ GSL: 184	91(4/11) FFF: 252(9/9) GSL: 185	LSF: 81((3/22) FFF: 262(9/19) GSL: 199	$\begin{aligned} & \hline \text { LSF: 77(3/17) } \\ & \text { FFF: } 269(9 / 16) \\ & \text { GSL: } 195 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { LSF: } 95(4 / 5) \\ & \text { FFF: } 246(9 / 3) \end{aligned}$ $\text { GSL: } 186$	LSF: 88(2/29) FFF: 259(9/16) GSL: 186	$\begin{aligned} & \text { LSF: 89(3/30) } \\ & \text { FFF: } 258(9 / 15) \\ & \text { GSL: } 245 \end{aligned}$	$\begin{aligned} & \text { LSF: } 69(3 / 10) \\ & \text { FFF: } 263(9220) \\ & \text { GSL: } 189 \end{aligned}$	$\begin{aligned} & \text { LSF: } 82(3 / 23) \\ & \text { FFF: } 256(9 / 13) \\ & \text { GSL: } 187 \end{aligned}$	$\begin{aligned} & \text { LSF: } 80(3 / 21) \\ & \text { FFF: } 256(9 / 13) \\ & \text { GSL: } 197 \end{aligned}$
LSF:91(4/1) FFF:246(9/3) GSL: 184	LSF: 78(3/19) FFF: 260(9/15) GSL: 184	$\begin{aligned} & \text { LSF: 79(3/19) } \\ & \text { FFF: } 263(9 / 20) \\ & \text { GSL: } 187 \end{aligned}$	LSF: 82(2/23) FFF: 260(9/17) GSL: 187	LSF: 59(2/28) FFF: 270(9/26) GSL: 201	LSF: 79(3/20) FFF: 270(9/26) GSL: 197
LSF: 83(3/24) FFF: 255(9/12) GSL: 186		LSF: 77(3/18) FFF: 264(9/21) GSL: 180	LSF: 69(3/10) FFF: 264(9/21) GSL: 206	LSF: 71(3/12) FFF: 271(9/27) GSL: 206	LSF: 92(4/2) FFF: 270(9/27) GSL: 206
ay for LSF,FFF, Maximum GSL for all Years					
LSF: 149(5/29)	LSF: 147(5/26)	LSF: 151(5/30)	LSF: 149(5/29)	LSF: $135(5 / 15$)	LSF: 135(5/15)
FFF: 246(9)	FFF: 309(11/	FFF: 306 (11/	FFF: 312(11	FFF: 315(11/1)	FFF: 326(11/21)
GSL:237	GSL: 246	GSL: 240	GSL: 243	GSL: 254	GSL: 260
LSF: 147(5/26)	LSF: 147(5/27)	LSF: 149(5/29)	LSF: 147(5/27)	LSF: 147(5/27)	LSF: $135(5 / 15$)
FFF: 301(10	FFF: $318(11 / 14)$	FFF: 314(1)	FFF: 323 (11	FFF: 315 (11	FFF: 315 (11)
GSL: 239	GSL: 246	GSL: 185	GSL: 265	GSL: 251	GSL: 252
LSF:150(5)	47(5/27)	LSF: 147(5/27)	LSF: $147(5 / 27)$	LSF: 129(59)	SF: 130(5/10)
FFF:311(11	20(11	326	FFF: 318(11/4)	FFF: 330(1)	FFF: 330(11/26)
GSL: 245	GS	GSL: 256	GSL: 254	GSL: 275	SL: 257
LSF: 147(5/26)		LSF: 151(5/30)	SF: 127(56)	LSF: 127(56)	LSF: 129(59)
FFF: 318(11/44)		FFF: 322(11/18)	FFF: 328(11/24)	FFF: 328(11/24)	FFF: 330(11
GSL: 255		GSL: 257	GSL: 265	GSL: 263	GSL: 260

Table 2. Calculated values of latest/earliest date of Last Spring Freeze, First Fall Freeze, and maximum and minimum days Growing Season Length for each corresponding station. Each value also corresponded to the actual day of occurrence. The location of the box represents the approximate geographical location.

Results*			
Index	Probability levels	Latest day	Earliest day
LSF	90\%	on or before May 17 (Oberlin NW)	on or before April 15 (Sedan SE)
	75\%	on or before May 12 (Tribune WC)	on or before April 11 (Sedan/Independence SE)
	50\%	on or before May 05 (tribune WC)	on or before April 05 (Sedan/Independence SE)
FFF	90\%	on or after Oct. 15 (Independence SE)	on or after Sept. 20 (Oberlin NW)
	75\%	on or after Oct. 23 (Sedan/Columbus SE)	on or after Sept 27 (Oberlin NW)
	50\%	on or after Nov 01 (Columbus SE)	on or after Oct 06 (Tribune EC)
Index	Probability levels	Shortest	Longest
GSL	90\%	$\begin{aligned} & 224 \text { days } \\ & \text { (Tribune WC) } \end{aligned}$	254 days (Sedan SE)
	75\%	$\begin{aligned} & 218 \text { days } \\ & \text { (Tribune WC) } \end{aligned}$	245 days (Sedan/Independence SE)
	50\%	$\begin{gathered} 210 \text { days } \\ \text { (Tribune WC) } \end{gathered}$	$\begin{aligned} & 238 \text { days } \\ & \text { (Independence SE) } \end{aligned}$

*summary of Tables $1 \& 2$ is calculated for 100+ years

Conclusion

There is one month difference in LSF, FFF and GSL across the state.
LSF is occurring earlier in the season, FFF is occurring later in the season and GSL is longer for most stations in the state.
The NW (Oberlin) or WC (Tribune) has the latest LSF, earliest FFF and shortest GSL.
In general SE (Sedan, Independence, Columbus) having the earliest LSF, latest FFF and longest GSL.

