

KANSAS STATE **Risk Analysis in Growing Season Length for Kansas, USA**

Sriram Perumal, Aavudai Anandhi^{*}, Charles W. Rice

Department of Agronomy, Kansas State University, Manhattan, Kansas. *anandhi@ksu.edu

Introduction

UNIVERSITY

In Kansas, agriculture continues to be a significant contributor to the state's economic well-being with rainfed production (e.g. sorghum and wheat crops) contributing its share. Agricultural production system is inherently a risky activity in rainfed areas where uncertainty in agroclimatic conditions affects production and profits. Understanding the role of risk and risk aversion in these systems, by reliable prediction of the uncertain variables is needed to develop technological and policy interventions that help reduce risk. Adaptation strategies such as synchronization of dates of cultivation practices and developing crop varieties with the changing climate have been used to reduce risk. Although the importance of risk has been widely recognized by researchers and policymakers, there is a dearth of quantitative information on risk.

LSF: 91(4/11)	LSF: 92(4/2)	LSF: 94(4/4)	91(4/11)	LSF: 81((3/22)	LSF: 77(3/17)
FFF: 246(9/9)	FFF: 255(9/12)	FFF: 246(9/3)	FFF: 252(9/9)	FFF: 262(9/19)	FFF: 269(9/26)
GSL:185	GSL: 185	GSL : 184	GSL: 185	GSL: 199	GSL: 195
LSF: 95(4/5)	LSF: 88(2/29)	LSF: 89(3/30)	LSF: 69(3/10)	LSF: 82(3/23)	LSF: 80(3/21)
FFF: 246(9/3)	FFF: 259(9/16)	FFF: 258(9/15)	FFF: 263(9/20)	FFF: 256(9/13)	FFF: 256(9/13)
GSL: 186	GSL: 186	GSL: 245	GSL: 189	GSL: 187	GSL: 197
LSF:91(4/1)	LSF: 78(3/19)	LSF: 79(3/19)	LSF: 82(2/23)	LSF: 59(2/28)	LSF: 79(3/20)
FFF:246(9/3)	FFF: 260(9/15)	FFF: 263(9/20)	FFF: 260(9/17)	FFF: 270(9/26)	FFF: 270(9/26)
GSL: 184	GSL: 184	GSL: 187	GSL: 187	GSL: 201	GSL: 197
LSF: 83(3/24)		LSF: 77(3/18)	LSF: 69(3/10)	LSF: 71(3/12)	LSF: 92(4/2)
FFF: 255(9/12)		FFF: 264(9/21)	FFF: 264(9/21)	FFF: 271(9/27)	FFF: 270(9/27)
GSL: 186		GSL: 180	GSL: 206	GSL: 206	GSL: 206
	Latest	Day for LSF,FFF	Maximum GSL fo	or all Years	
LSF: 149(5/29)	LSF: 147(5/26)	LSF: 151(5/30)	LSF: 149(5/29)	LSF: 135(5/15)	LSF: 135(5/15)
FFF: 246(9/9)	FFF: 309(11/2)	FFF: 306(11/2)	FFF: 312(11/8)	FFF: 315(11/11)	FFF: 326(11/21)
GSL:237	GSL: 246	GSL : 240	GSL: 243	GSL: 254	GSL: 260
LSF: 147(5/26)	LSF: 147(5/27)	LSF: 149(5/29)	LSF: 147(5/27)	LSF: 147(5/27)	LSF: 135(5/15)
FFF: 301(10/28)	FFF: 318(11/14)	FFF: 314(11/10)	FFF: 323(11/18)	FFF: 315(11/11)	FFF: 315(11/11)
GSL: 239	GSL: 246	GSL: 185	GSL: 265	GSL: 251	GSL: 252
LSF:150(5/30)	LSF: 147(5/27)	LSF: 147(5/27)	LSF: 147(5/27)	LSF: 129(5/9)	LSF: 130(5/10)
FFF:311(11/7)	FFF: 320(11/14)	FFF: 326(11/21)	FFF: 318(11/14)	FFF: 330(11/25)	FFF: 330(11/26)
GSL: 245	GSL: 260	GSL: 256	GSL: 254	GSL: 275	GSL: 257
LSF: 147(5/26)		LSF: 151(5/30)	LSF: 127(5/6)	LSF: 127(5/6)	LSF: 129(5/9)
FFF: 318(11/14)		FFF: 322(11/18)	FFF: 328(11/24)	FFF: 328(11/24)	FFF: 330(11/25)
GSL: 255		GSL: 257	GSL: 265	GSL: 263	GSL: 260

Objective

To provide quantitative information on uncertain agrometeorological indicators (AMI) such as growing season length (GSL), last spring freeze (LSF) and first fall freeze (FFF) used in many adaptation strategies to reduce risk.

Data Used

LSF, FFF, and GSL calculated from 23 centennial stations spread across Kansas (Figures 1 & 2).

Definitions of indices

Frost or freeze days is defined as a day with a minimum temperature (Tmin) Tmin < 0 °C. Number of frost days (nFDs) is the number of days with frost. Last spring freeze (LSF) is the last day in March through May with Tmin < 0°C for the last time until fall. First fall freeze (FFF) is the day in September through November with Tmin $< 0 \circ C$ for the first time since spring. **Growing season length (GSL)** is based on the onset of spring and fall. The number of days between the LSF and the FFF of the same year is used to determine GSL.

NW	WC	SW	O Stations
NC	С	SC	
NE	EC	SE	

Fig. 1. Kansas is divided into 9 climate regions with gradients running from north to south and east to west. Long-term weather stations used for analysis are denoted within each climate division.

Table 2. Calculated values of latest/earliest date of Last Spring Freeze, First Fall Freeze, and maximum and minimum days Growing Season Length for each corresponding station . Each value also corresponded to the actual day of occurrence. The location of the box represents the approximate geographical location.

		Results	*		
Index Probabil levels		Latest day	Earliest day		
		on or before May	on or before April 15		
	90%	17 (Oberlin NW)	(Sedan SE)		
		on or before May	on or before April 11		
LSF	75%	12 (Tribune WC)	(Sedan/Independence SI		
		on or before May	on or before April 05		
	50%	05 (tribune WC)	(Sedan/Independence SI		
		on or after Oct. 15	on or after Sept. 20		
	90%	(Independence SE)	(Oberlin NW)		
		on or after Oct. 23	on or after Sept 27		
FFF		(Sedan/Columbus	(Oberlin NW)		
	75%	SE)			
		on or after Nov 01	on or after Oct 06		
	50%	(Columbus SE)	(Tribune EC)		
Index	Probability levels	Shortest	Longest		
		224 days	254 days		
GSL	90%	(Tribune WC)	(Sedan SE)		
			245 days		
		218 days	(Sedan/Independence		
	75%	(Tribune WC)	SE)		
		210 days	238 days		
	50%	(Tribune WC)	(Independence SE)		

Methodology

Risk Analysis is based on probability distribution function (PDF's). The cumulative PDF (CDF) helps to identify and quantify the uncertainties associated with LSF, FFF & GSL. It gives the proportion less than X.

Steps in estimating empirical CDF:

1. Sort the observation into ascending order $X_{(1)}$ to $X_{(N)}$ 2. Calculate CDF [F(x)]: $-\infty < x < x_1$

 $\begin{array}{l} \int x_i \leq x < x_{(i+1)} \\ (1 \ x_n \leq x < \infty) \end{array}$ **F(X)** =

Fig. 2: Probability plots for one of the 23 centennial station results (Ashland). Cumulative probability plot of LSF & GSL (1 & 3). Exceedance probability plot of FFF(2). For each Individual plot the black dots correspond to the years from 1980-2009 the red squares correspond to the years from 1950-1979 and the green diamonds correspond to the years form 1920-1949.

	5	0% proba	bility leve				7	5% proba	bility leve	el	
F:May 1	LSF: May 2	LSF:May 1	LSF:April 25	LSF:April 17	LSF:April 11	LSF:May 9	LSF: May 12	LSF:May 11	LSF:May 3	LSF: April24	LSF:April 19
F:Oct 9	FFF:Oct 10	FFF:Oct 7	FFF:Oct 11	FFF:Oct 17	FFF:Oct 24	FFF:Oct 1	FFF:Sept 29	FFF:Sep 27	FFF:Oct 5	FFF:Oct 9	FFF:Oct 14
SL 213	GSL:212	GSL 213	GSL:220	GSL:226	GSL:232	GSL: 222	GSL:221	GSL: 221	GSL: 228	GSL:234	GSL:248
F: April 1	LSF:April 22	LSF:April 26	LSF:April 17	LSF:April 19	LSF:April 13	LSF: May 11	LSF: April30	LSF:May 5	LSF::April26	LSF:April 29	LSF:April 20
F:Oct 8	FFF:Oct 17	FFF:Oct 13	FFF:Oct 21	FFF:Oct 15	FFF:Oct 21	FFF:Sep 28	FFF:Oct 9	FFF:Oct 6	FFF:Oct 14	FFF:Oct 6	FFF:Oct 13
SL:213	GSL:222	GSL:218	GSL:227	GSL:224	GSL:230	GSL:220	GSL:229	GSL:227	GSL:234	GSL:232	GSL:238
F:April 23	LSF:April 17	LSF:April 16	LSF:April 16	LSF: April 5	LSF:April 10	LSF:May 1	LSF:April 24	LSF:April 27	LSF:April 27	LSF:April 12	LSF:April 16
F:Oct 17	FFF:Oct 25	FFF:Oct 24	FFF:Oct 22	FFF:Oct 29	FFF:Oct 26	FFF:Oct 9	FFF:Oct 16	FFF:Oct 15	FFF:Oct 13	FFF:Oct 21	FFF:Oct 17
SL:221	GSL:227	GSL:227	GSL:228	GSL:237	GSL:234	GSL:229	GSL:232	GSL:236	GSL:234	GSL:245	GSL:242
F:April 20		LSF:April 13	LSF:April 10	LSF:April 10	LSF:April 9	LSF:April 27		LSF:April 19	LSF:April 16	LSF:April 18	LSF:April 16
F:Oct 20		FFF:Oct 25	FFF:Oct 25	FFF:Oct 25	FFF:Oct 25	FFF:Oct 10		FFF:Oct 14	FFF:Oct 17	FFF:Oct 18	FFF:Oct 18
SL:223		GSL:231	GSL:233	GSL:234	GSL:235	GSL:231		GSL:239	GSL:243	GSL:243	GSL:243

90% probability level LSF:May 16 LSF:May 17 LSF:May 16 LSF:May 12 LSF:May 2 LSF:April 28 FFF:Sep 27 FFF:Sep 23 FFF:Sep 20 FFF:Sep 26 FFF:Sep 30 FFF:Oct 6 GSL:239 GSL:245 GSL:228 GSL:233 LSF: May 16 LSF:May 7 LSF:May 14 LSf:May 3 LSF:May 9 LSF:May 1

Table 1. 50%;75%;90% probability levels of LSF, FFF and GSL for station. Each value also corresponded to the actual day of ccurrence for LSF and FFF, hereas, for GSL the value presents the duration. The location the box represents the pproximate geographical location.

*summary of Tables 1 & 2 is calculated for 100+ years.

3. Exceedence probability is calculated as 1 - F(X)4. CDF is used for LSF & GSL; Exceedence probability is used for FFF.

FFF:Sep 21	FFF:Sep 29	FFF:Sep 26	FFF:Oct 1	FFF:Sept 29	FFF:Oct 6	
GSL:226	GSL:237	GSL:232	GSL:242	GSL:239	GSL:244	
LSF:May 11	LSF:May 3	LSF: May 3	LSF:May 7	LSF:April 21	LSF:April 26	
FFF:Sep 29	FFF:Oct 10	FFF:Oct 6	FFF:Oct 3	FFF:Oct 12	FFF:Oct 8	
GSL:236	GSL:241	GSL:243	GSL:241	GSL:252	GSL:249	
LSF:May 4		LSF:May 1	LSF:April 24	LSF:April 28	LSF:April 23	
FFF:Oct 3		FFF:Oct 8	FFF:Oct 9	FFF:Oct 7	FFF:Oct 8	
GSL:240		GSL:244	GSL:248	GSL:248	GSL:248	

Acknowledgements

This material is based upon work supported by the NSF under Award No. EPS-0903806 and matching support from the State of Kansas through Kansas Technology Enterprise Corporation.

UID: 76447

Conclusion • There is one month difference in LSF, FFF and GSL across the state. • LSF is occurring earlier in the season, FFF is occurring later in the season and GSL is longer for most stations in the state.

- The NW (Oberlin) or WC (Tribune) has the latest LSF, earliest FFF and shortest GSL.
- In general SE (Sedan, Independence, Columbus) having the earliest LSF, latest FFF and longest GSL.