

Cluster analysis to tiller age categories in continuously stocked marandu palisade grass fertilized with nitrogen

Adenilson José Paiva¹; Lilian Elgalise Techio Pereira¹; Sila Carneiro da Silva^{2*} ¹ PhD student of University of São Paulo USP/ESALQ ; ² Professor of University of São Paulo USP/ESALQ *Corresponding author - siladasilva@usp.br

Introduction

- \checkmark Tiller age influences the turnover of leaves on individual tillers
- \checkmark Studies regarding the effect of plant age on the tissue turnover in tropical forage grasses are scarce and the few existing use arbitrary criteria for

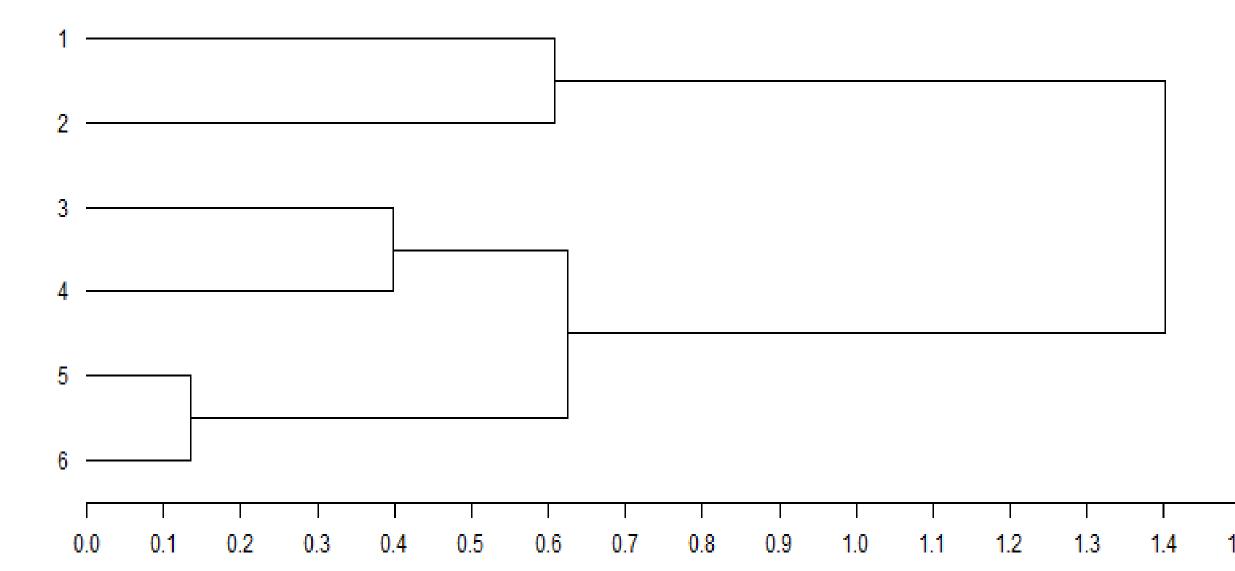
✓ All previously tagged tillers still alive

Results

✓ The cluster analysis performed with the marandu palisade grass data resulted in three groups (Figure 1), defined in terms of tiller age categories: tillers under 60 days of age

defining tiller age categories to be evaluated

 \checkmark On a tiller level, leaf appearance and elongation as well as leaf lifespan are important


✓ Use morphological of characters associated with multivariate analysis techniques been for used have determining similarities or differences between groups of interest

Objective

✓ Identify classes of tiller age with similar morphogenetic characteristics on

- were counted and new ones marked with other color every four weeks \checkmark In February 2008 all live tillers within the rings were classified into six age categories :
- less than 30 days of age
- 31 and 60 days
- 61 to 90 days
- 91 to 120 days
- 121 to 150 days
- more than 150 days Leaves were identified, their lamina length measured leaves and new

tillers between 60 and 120 days of age tiller over 120 days of age

Average Distance Between Clusters

1: tillers under 30 days of age; 2: tillers between 30 and 60 days of age; 3: tillers between 60 and 90 days of age; 4: tillers between 90 and 120 days of age; 5: tillers between 120 and 150 days of age; 6: tillers over 150 days of age

Figure 1 – Dendogram based on the results of the cluster analysis of morphogenetic responses of continuously stocked marandu palisade grass

Age

continuously stocked marandu palisade grass fertilised with nitrogen using the multivariate procedure of cluster analysis

Materials and Methods

✓ The experiment was carried out at Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil

- \checkmark Application of 0, 150, 300 and 450 kg/ha of N (using pure ammonium nitrate)
- \checkmark Were allocated to experimental units

counted

✓ Data was used to calculate rates of leaf appearance (LAR) and elongation (LER) and leaf lifespan (LLS) \checkmark A multivariate model was used to discriminate tiller age categories based on the three characteristics – LAR, LER and LLS – as indicators, isolating the

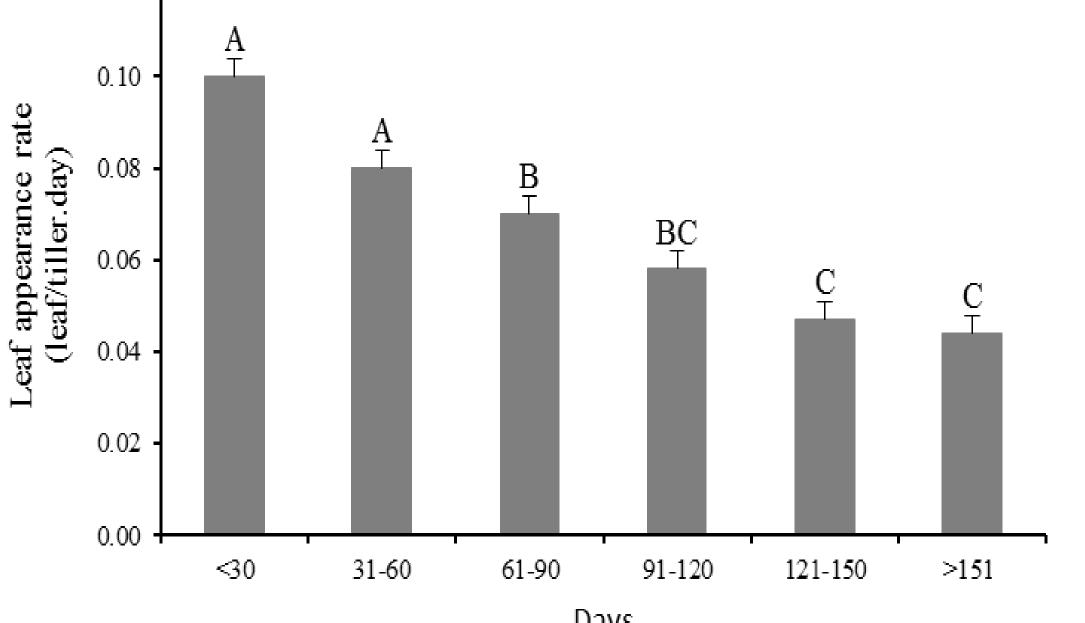


Figure 2 – Leaf appearance rate (leaf/tiller.day) in tiller age categories of continuously stocked marandu palisade grass fertilised with nitrogen

Conclusion

✓ The cluster analysis demonstrated that differences there plant are in morphogenetic responses depending on tiller age category, and that those could be well represented by three age groups as follows: young (under 60 days old), mature (between 60 and 120 days old) and old (more than 120 days old).

according to a complete randomised block design with four replications ✓ Three 30 cm PVC rings were used to evaluate tillering dynamics \checkmark All tillers within each ring were counted and tagged with plastic coated wires of a single color

block effect to identify groups according

to tiller age \checkmark In the sequence, using the means of characteristics, studied the the

Euclidean distance between groups was estimated

