Specific Heat Capacity of Soil Minerals and Its Influence on Heat **Pulse Measurement of Soil Water Content**

Yajing Wang¹, Yili Lu¹, Robert Horton², and Tusheng Ren¹ ¹Department of Soil & Water, China Agricultural University, Beijing, 100193 ²Iowa State University, Ames IA 50010

INTRODUCTION

- The heat-pulse method has been used widely for measuring soil water content (θ). The accuracy of θ depends on the specific heat capacity of soil minerals (c_m) . The value of c_m varies with soil texture and a range of data exists. For oven-dried (105°C) samples, specific heat capacity of soil solids (c_s) is determined by the specific heats of minerals, organic matter (OM), and tightly bound water.
- The objectives of this work are to: (1) partition the contributions of soil minerals, OM, and tightly bound water to c_s ; (2) evaluate reliability of the commonly applied c_m value of 0.725 MJ Mg⁻¹ °C⁻¹ from de Vries (1963); and (3) investigate the influences of c_m value selection on θ measurements from the heat-pulse method.

MATERIALS & METHODS

- Samples: 9 soils with various textures and OM (Table 1).
- Specific surface area (SA) of samples: WP4-T dewpoint meter.
- Specific heat capacity of soil samples: differential scanning calorimetry (DSC).
 - c_s and c_{s-200} : samples with OM dried at 105°C and 200°C, respectively
 - c_m: OM-removed samples dried at 200°C
- Contributions of soil minerals, OM, and bound water to c, were estimated using the de Vries (1963) model. Specific heat of OM was 1.92 MJ Mg⁻¹ °C⁻¹.
- Heat-pulse θ were measured on repacked samples of soils 6, 8, and 9, with a θ range of 0.025 - 0.285 cm³ cm⁻³.

Table 1 Soil Samples					
Soil	Texture	Clay	ОМ	SA	
		%	g kg⁻¹	m² kg⁻¹	
1	sand	5	0.9	6	
2	sandy loam	7	8.6	29	
3	silt loam	16	31.4	87	
4	silt loam	18	12.4	57	
5	silt loam	18	8.4	46	
6	silt loam	22	20.1	73	
7	silt loam	24	30.2	67	
8	clay loam	30	2.7	88	
9	silt clay	43	20.9	136	

Fig. 1 Specific heat of soil minerals (c_m) as related to specific surface area (SA) and clay content of the samples.

Specific heat capacity of soil:

- Vries, 1963) slightly underestimated $c_{\rm m}$.

Contributions of soil constituents to *c*_s:

Soil θ measured with the heat-pulse technique:

References:

- North-Holland Publ. Co., Amsterdam, Netherlands.
- Sci Soc Am J. 75:481-487.

Acknowledgement:

RESULTS & CONCLUSIONS

• $c_{\rm m}$: a mean of 0.736 MJ Mg⁻¹ °C⁻¹ (0.717 - 0.759 MJ Mg⁻¹ °C⁻¹). The common value of 0.725 MJ Mg⁻¹ °C⁻¹ (de

 c_s : a mean of 0.750 MJ Mg⁻¹ °C⁻¹ (0.718 - 0.772 MJ Mg⁻¹ °C⁻¹)

c_m and c_s correlates significantly to SA and clay content (Fig. 1). For improved accuracy, it may be necessary to estimate soil-specific c_m values from SA or clay content measurements.

The contributions of OM and tightly bound water to c_s increased with their contents in the soil (Fig. 2). On average, soil minerals, OM, and tightly bound water accounted for about 95%, 3%, and 2% of c_s, respectively.

Heat-pulse θ was consistently higher than that of the gravimetric method (Fig. 3).

When the c_m value of 0.725 MJ Mg⁻¹ °C⁻¹ (de Vries, 1963) was replaced with DSC measured c_m values, the relative error in heat-pulse θ was reduced by 6%, 7%, and 10% for soils 6, 8, and 9, respectively. Although θ accuracy with heat-pulse technique is improved with soil-specific c_m data, θ errors mainly come

from other sources (e.g., uncertainties of heat-pulse measurements of volumetric heat capacity of bulk soil).

de Vries, D.A. 1963. Thermal properties of soils. p210-235. In W.R. van Wijk (ed.) Physics of plant environment.

Wang, Y.J., S. Lu, T.S. Ren, and B.G. Li. 2011. Bound water content of air-dry soils measured by thermal analysis. Soil

The research was supported by National Natural Science Foundation of China (41101204).

Contact: <u>tsren@cau.edu.cn</u> **UID: 75037**