Introduction

The P Index has been part of the NMAN nutrient management software program in Ontario since the late 1990s. It was modified from the Maryland P Index, following an additive model, and the output was restrictions on P application rates and setbacks surface water.

Site Characteristic	Rating						
Soil Erosion (T ha ⁻¹)	<5		5-1	1	1	L1-17	
Rating	2		4		8		
Water Runoff Class (based on	VL		L	N	1	Н	
slope and HSG)							
Rating	1		2	4	-	8	
P Soil Test (Olsen, ppm)	<15		15-30	31-	60	61-100)
Rating	2		4	8	8	16	
Fertilizer App. Rate (kg P ₂ O ₅ ha ⁻¹)	0		<25	25-	50	51-75	
Rating	0		0.5	1	-	2	
Fertilizer App. Method	None		Band	Incor	p. <2	Incorp. >	>2
				w	٢S	wks	
Rating	0		1.5		3	6	
Manure/Bio App. Rate	0		<12	12-	36	37-60	
Rating	0		0.5	1	-	2	
Manure/Bio App. Method	None		Inject	Incorp. <5 Surfac		Surface	·,
				da	ys	pre-till	1
Rating	0		1.5		3	6	
P Index (Sum of ratings):	<15	<15 15-29 3		0-50			
P Movement Potential :	Very Low	1	Lov	V	Мо	derate	
Setback UP TO crop removal (m)	3		3	3 3		3	

 Table 1: The Current Ontario P Index

Reasons for Updating the Ontario P Index

30

Setback OVER crop removal (m)

•Our understanding of P sources and transport pathways has greatly increased •The original P Index was never validated against field measurements •The different risks associated with dissolved versus particulate P need to be accounted for separately

30

•There was a desire for continuous rather than discrete variables, to avoid sudden jumps in risk categories

•Additional pathways for P loss needed to be addressed (i.e. tile drains) •The calculations in the revised P Index should be more transparent and easily explained

•It should be easier to link the P Index outputs to mitigation options

•Validation of the P Index would be easier with an updated format

Considerations in P Index Revisions

•The inputs required to calculate the P Index should not exceed what is currently required for the NMAN program

•The output from the P Index should be proportional to the actual losses of P from the landscape into surface water from a particular combination of soil characteristics, climate and management

•Calculations within the P Index should be easily explainable

•Mitigation options for land managers should be easily discerned from the P Index results

⁽²⁾Ontario Ministry of Agriculture Food and Rural Affairs, Ridgetown, ON, Canada (3)Ontario Ministry of Agriculture, Food and Rural Affairs, Woodstock, ON, Canada (4)Ontario Ministry of Agriculture, Food and Rural Affairs, Stratford, ON, Canada (5)Ontario Ministry of Agriculture, Food and Rural Affairs, Vineland, ON, Canada (6) Stantec, Kitchener, ON, Canada

Proposed Revisions to the Ontario P Index

D. Keith Reid¹, Adam Hayes², Christine Brown³, Andrew Jamieson¹, Kevin McKague³, Donald Hilborn³, Bonnie Ball⁴ Deanna Nemeth⁵ and Daniel Saurette⁶

Modifications proposed for the Ontario P Index

ks fro	m		individual
		•	Inherent r
]		applicatio
		•	Contributi
			system ar
1		•	Risk of P
		•	Net impac
,)0		•	Factors a
-			method a
5		P Index	
corp.			

Structure of P Index changed from Additive to a Component model, where components have source X transport calculations risk of P losses is calculated separately from risk of losses from on of P sources (fertilizer, manure and biosolids) ting width for Surface runoff determined by soil type, cropping and drainage density (Gburek et al. 2002) loss is calculated separately for Particulate and Dissolved P act of tile drains on P loss is calculated (Reid et al. 2012) are updated for calculation of the impact of rate, application

and material type on risk of losses from applied materials ulations

Erosion	Predicted Soil	Erosion (USLE) (ton	
Particulate P Source / area	P _{Part} S _A = Erosior	n * (P _{Part} T ⁻¹) * Bioava	
Particulate P Source / volume	P _{Part} S _{V =} P _{Part} S	_A / (mm annual preci	
Particulate P Source / stream length	P _{Part} S _L =	= P _{Part} S _A * ((CW – FD	
Surface Delivery Modifier (M _{SDp})	Reduction in P transport	t with Riparian Buffer	
Tile Drainage Modifier (TDM)	Reduction in P transport	rt with Tile Drains (Ra	
Particulate P Delivery	Particula	ate P = $P_{Part}S_L * M_{SDp}$	
Soil Test	Soil Test	P (Olsen) (mg P kg ⁻¹	
Dissolved P Source / volume	P _{Diss} S	$v_{\rm V}$ = Soil Test P * 0.0	
Dissolved P Source / area	P _{Di}	$_{ss}S_A = P_{Diss}S_V * Pr * 1$	
Runoff Potential	RP = Runoff Fraction (from curve number) * Pr		
Dissolved P Source / stream length	F	$P_{\text{Diss}}S = P_{\text{Diss}}S_{\text{V}} * RP$	
Dissolved P Delivery	Dissolved P = $(P_{Diss}S) * M_{SDd}$		
Tile Drainage Flow Contribution (TDF)	Pr	* MF * TD * CW/TSp	
Tile Drainage P Contribution	TC	$\mathbf{P} \mathbf{F} * (\mathbf{P}_{Part} \mathbf{S}_{V} + \mathbf{P}_{Diss} \mathbf{S}_{V})$	
Inherent P Index (PI _{IN})	PI _{IN} = Particulate P Delivery + D	issolved P Delivery -	
Interpretation of PI _{IN} values	PI _{IN} > 4000 No application of P	Calculate allow	
P _{ap} (P application method coefficient)	Proportion of applied P that in	remains available to corporation / banding	
P _{av} (P availability coefficient)	Proportion of P from each	n source that is solub	
K _R (P runoff coefficient	Proportion of solu	ble P that actually en	
Maximum allowable P ap	plication =	PI _{MA}	
Applied P concentration runoff water (P _{Ac}) =	in	$P_{ap} * P_{av} * K_{R} * Rat$	
Application Surface contribution (C_{APsur}) =	(P _{Ac}) * (RP * Tile Modifi	ier) * (1000/(Annual SD)/100)	
Application Subsurface contribution (C _{APsub}) =	(P _{Ac}) * TDF	* (1000/(Annual Pre	
Application Contribution $(C_{AP}) =$		(C _{APsur}) + (C _{APsub})	
(~AP) -	Test: $\sum (C_{AP}) \le P$	$I_{MAX} - PI_{IN}$	

Acronyms: CW = Contributing Width, FD = distance from field edge to surface water, MF = fraction of precipitation that enters tile drains through macropores, Pr = annual precipitation (mm), RP = runoff fraction, SD = Setback Distance for application, TDF = Tile Drain Flow, TSp = Tile Spacing

~17				
16				
VH				
16				
>100				
32				
>75				
4				
Not incorp.				
12				
>60				
4				
Surface,				
bare soil				
12				
>50				
High				
30				
Do not apply				

>17

60

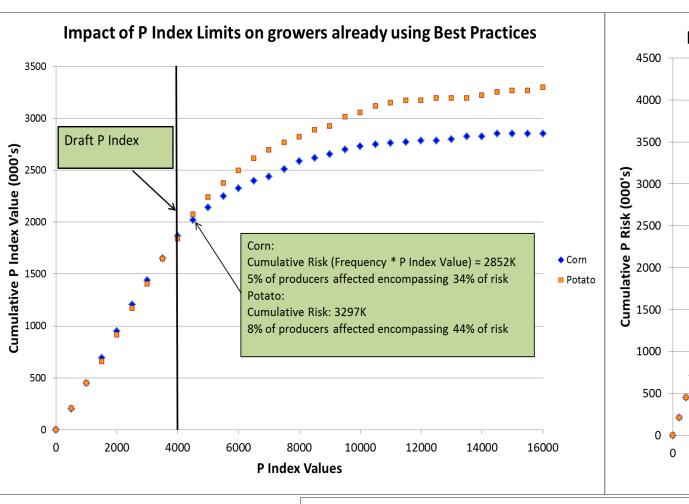
onnes ha⁻¹ yr⁻¹) ailability of P_{Part} cipitation * 10) D)/100) er or Grassed Waterway Random or Systematic) Do * TDM ¹ of soil) .0027 Pr * 10 * ((CW – FD)/100) MDT* bc + Tile Drainage P Contribution $PI_{IN} < 4000$ wed P applications (Step 2) be dissolved in runoff after ble, relative to fertilizer P nters runoff water _{AX} - PI_{IN} Precipitation*10) * ((CW –

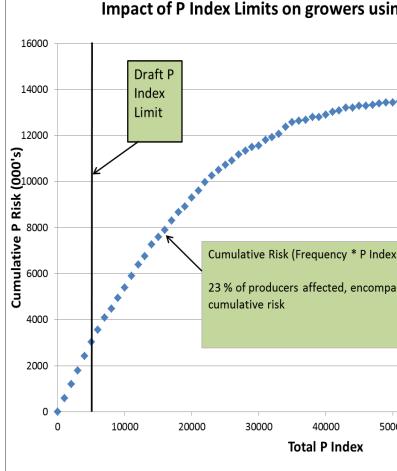
ecipitation*10))

Areas requiring further research and validation

Aside from validating the directionality and proportionality of the P Index as a whole to water quality data, there are individual components which require further research. These include:

- Partitioning of tile flow between matrix and macropore flow
- Proportion of soluble P that becomes entrained in runoff water
- Reduction in P losses from different banding and incorporation systems
- Seasonality of P transport from the landscape
- Effectiveness of P mitigation strategies (buffer strips, etc.)


Sensitivity testing of the revised Ontario P Index


A Monte Carlo simulation was performed to assess the potential impact of the revised P Index on producers, as well as the potential reductions in P losses from agricultural land. Sample runs (n = 3000) were conducted for three different groups, with model criteria set to emulate:

- Best management P application followed recommendations, all P banded or incorporated
- 2. Normal management limited P over-application, mix of banded and broadcast

3. Poor management – up to 100 kg ha⁻¹ overage allowed, all broadcast

The cumulative impact across these sample populations were assessed by calculating the frequency distribution of the P Index values, then multiplying the frequency in each category by the P Index value for that category. These were then compared to a Draft P Index limit. All of the groups had some fields that exceeded the limit and would have restrictions on P application imposed, but the number increased as the level of management declined.

References

Gburek, W. J., Sharpley, A. N., Heathwaite, L. and Folmar, G. J. 2000. Phosphorus Management at the Watershed Scale: A Modification of the Phosphorus Index. J. Env. Qual. 29:130-144.

Reid, D. K., Ball, B. and Zhang, T. Q., 2012 Accounting for the Risks of Phosphorus Losses through Tile Drains in a Phosphorus Index. J. Env. Qual. 41. doi: 10.2134/jeq2012.0238

P	ndov							
	.imit	* ^{*******}	1484 ⁴⁴⁸⁴⁴¹	,				
			9% of produ Potato: Cumulative I	cers affecte Risk = 38291	d encompassi K	value) = 3788 ng 45% of risi ng 45% of risi	k	◆ Corn ■ Potato
5000		10000	15000 Total P	20000 Index	25000	30000	35000	
; Poor P		ces						
′alue) = 13,′ ing 78% of		◆ Cumulat	ive P Load					
600	000	70000	80000					

⁽¹⁾ Science and Technology Branch, AAFC, Guelph, ON, Canada