Potassium Release From Coffee Husks As Affected by N Fertilization

Izaias P. Lisboa¹, Ciro A. Rosolem¹, Chad J. Penn², Taciane M. Gonçalves¹ and Amanda B. Gomes¹, (1)Crop Science, São Paulo State University, Botucatu, SP. Brazil. (2)Oklahoma State University, Stillwater.

INTRODUCTION

- **❖** Coffee husk = 50% (by weight) of the total amount of coffee harvested.
- **❖** 45 kg of dry coffee pulp = 4.5 kg of inorganic fertilizer formulated 14-3-37.
- *There is growing interest in using wastes to improve soil productivity in agricultural systems.
- Plant residues are beneficial in the regeneration of soil nutrients, organic matter and improving the physical and biological properties.
- The combined application of organic wastes and chemical fertilizers improved the synchrony between nutrient release and plant uptake.

OBJECTIVE

This research aimed to estimate K mineralization from soil applied coffee husks, as affected by nitrogen application.

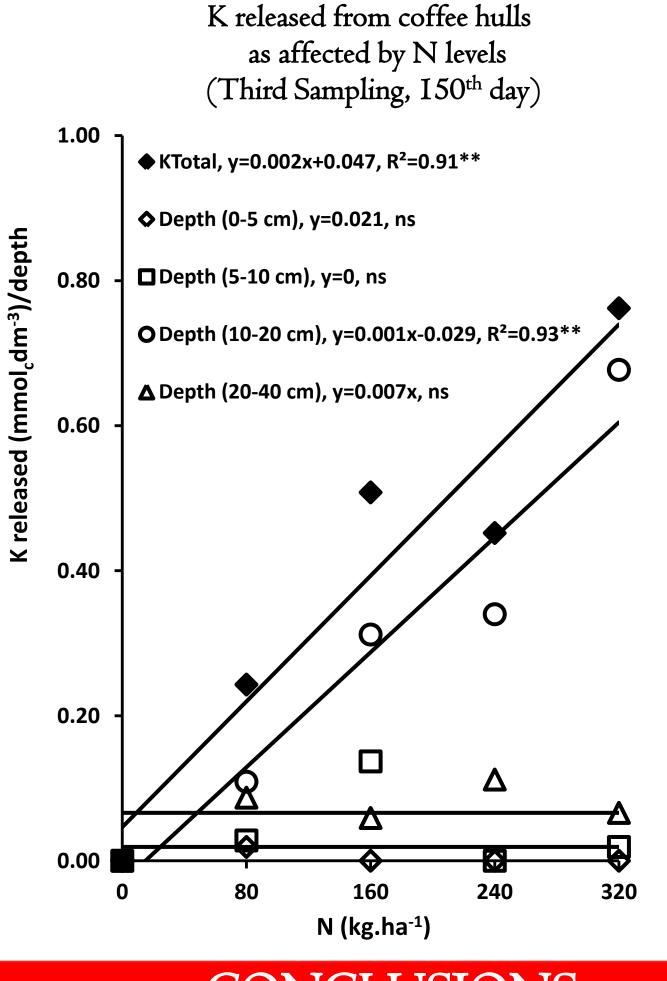
MATERIAL AND METHODS

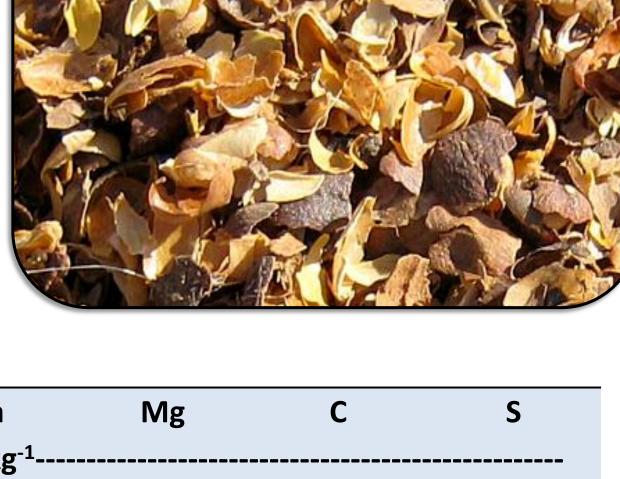
Study site: College of Agricultural Sciences (soil columns in a greenhouse).

Treatments: 0, 80, 160, 240 and 320 kg ha⁻¹ of N, as NH₄NO₃ fertilizer, in the presence and absence of 10 t ha⁻¹ of coffee husks.

Sampling: At 50th, 100th and 150th day.

Evaluations: Soil samples were collected and analyzed for K contents at depths of 0-0.05; 0.05-0.10; 0.10-0.15 and 0.15 to 0.40 m.


Data analyses: Data were subjected to analysis of variance, and when F values were significant (P < 0,05), to regression analysis.



K released from coffee hulls K released from coffee hulls as affected by N levels as affected by N levels (First Sampling, at 50th day) (Second Sampling, 100th day) ◆ K Total, y=0.012x²-0121x, R²=0.92** 3.5 **♦** Depth (0-5 cm), y=0.027x, ns **♦** Depth (0-5 cm), y=0, ns **Depth** (5-10 cm), $y=0.128x^2+0.187x$, □ Depth (5-10 cm), y=0.007x²-0.113x,R²=0.81** O Depht (10-20 cm), y=0.002x+0.005, O Depht (10 -20 cm), y=0.003x+0.062, R²=88** △ Depth (20 -40), y=-0,003, ns △ Depth (20-40 cm), y=0.020, ns 1.5 1.0 1.0 0.5 N (kg.ha⁻¹) N Kg (kg.ha⁻¹)

RESULTS

Table 1. Coffee hulls characterization.						
N	Р	K	Ca	Mg	С	S
			g.kg ⁻¹			
13.23	0.78	24.79	3.09	0.77	412.5	2.12
C:N Ratio	Cellulose	Lignin	Phenol*	рН	C.E	Brix
g.kg ⁻¹					μS/cm²	%
31.18	25.64	15.41	16.90	5.62	1,953.00	29.80
*Tannic acid equivalent.						

CONCLUSIONS

- □ Regardless of the evaluation period (i.e. day 50, 100, or 150), Higher N applications resulted in greater K release from coffee hulls.
- □The application of N levels (on treatments without coffee hulls) did not affect soil K contents during the evaluation period.