

Agriculture et Agri-Food Canada Agroalimentaire Canada

¹Shanxi Agriculture University, Taigu County, Shanxi Province, China 030801; ²Greenhouse & Processing Crops Research Center, Agriculture & Agri-Food Canada, Harrow, ON, Canada haoxianjun660@126.com

Agriculture and

- use efficiency of fertilizer P applied.
- bioavailability.
- influence the effect of AMF symbiosis on plant growth.
- support optimal AMF association.

- loader machine in 2010 before sampling.
- Shanxi Agriculture University, China.
- mg P kg⁻¹).
- concentration *C_i*), and P utilization.

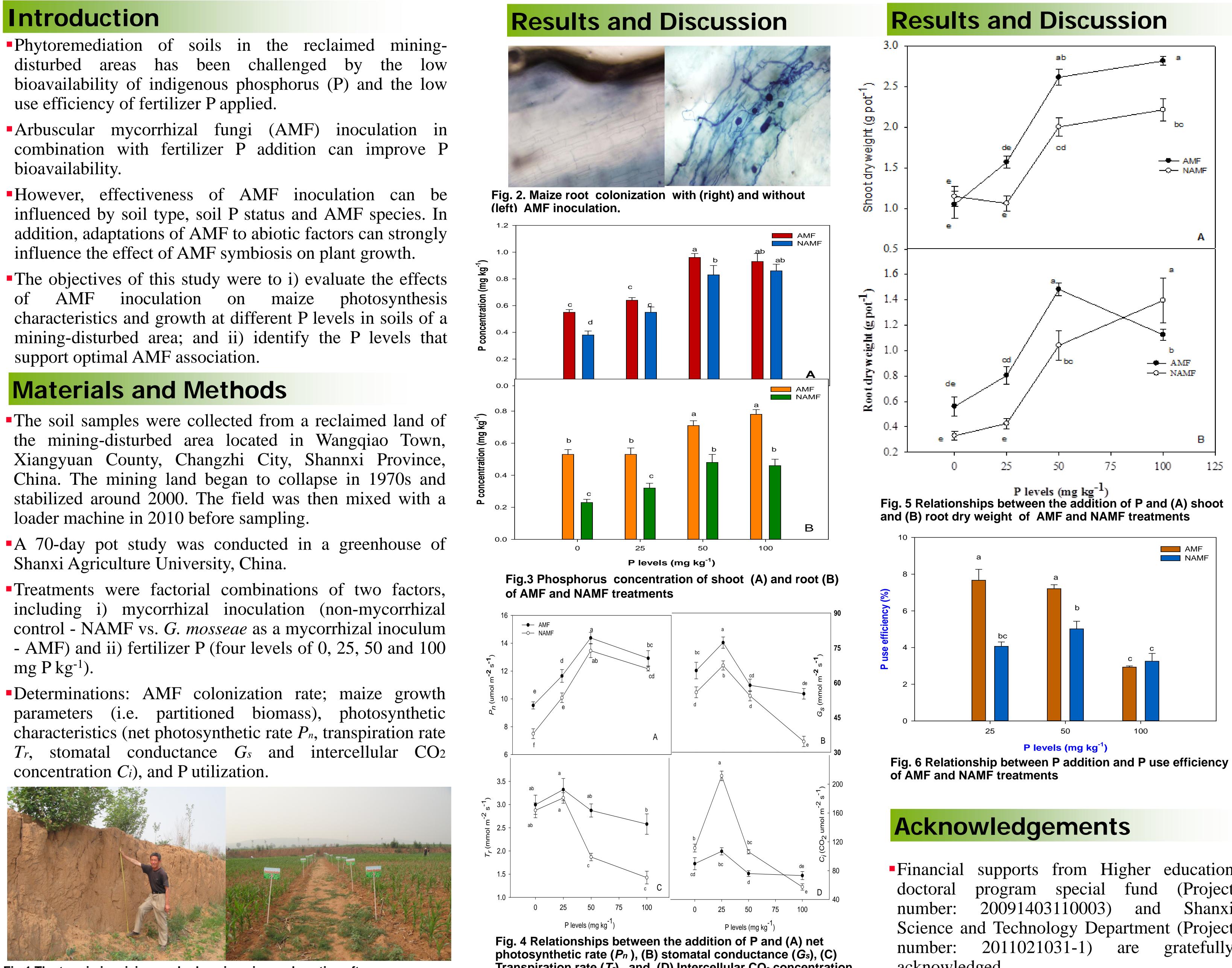


Fig.1 The terrain in mixing pushed engineering reclamation after subsidence (left) and phytoremediation with maize (right) in the area

Effects of Arbuscular Mycorrhizal Fungal Inoculation and Phosphorous Addition on Maize Photosynthesis and Growth in A Reclaimed Soil of the Mining Areas X.J. Hao¹, J.P. Hong¹, and T.Q. Zhang²

Transpiration rate (T_r) , and (D) Intercellular CO₂ concentration (Ci) of AMF and NAMF treatments

Financial supports from Higher education doctoral program special fund (Project Shanxi Science and Technology Department (Project gratefully acknowledged.

Results and Discussion

Root colonization and P concentration in shoot and root (Fig. 2 and 3):

- in P rate.

Photosynthetic characteristics (Fig. 4):

- inoculation.

Maize Growth (Fig. 5):

Phosphorus efficiency (Fig. 6):

- level increased.

Conclusions

- area.

✓ Root colonization reached 78-94% with AMF, while with NAMF no root colonization was observed.

✓ With AMF, root colonization increased with increases

Compared with NAMF plants, maize shoot and root P concentration was improved by 15.5% and 47.8%, respectively, at the 50 mg P kg⁻¹ rate.

✓ AMF increased *Pn*, *Tr* and *Gs*, but decreased *Ci*.

✓ With increasing P levels, photosynthetic parameters of maize leaves in both AMF and NAMF treatments showed an initial increasing and then a decreasing trend after a peek. The highest levels of net photosynthetic rate were obtained at 50 mg P kg⁻¹, regardless AMF

✓ With increasing P rates, the growth of both AMF and NAMF maize plants increased.

Maize plant leaf area and stem diameter of AMF

increased by 21.9 and 13%, respectively, relative to

NAMF. Compared to NAMF, shoot and root dry weight with AMF increased by 25%.

 \checkmark The treatment combination of AMF with 50 mg kg⁻¹ P was considered the optimum for maximum plant growth.

✓ Phosphorus use efficiency was higher in the AMF treatment than the NAMF treatment, and decreased as P

 \checkmark At 25 and 50 mg P kg⁻¹ levels, the P use efficiency of AMF plants increased by 88.5% and 43.5% compared to NAMF treatments.

✓ Significant differences were observed between the treatments with and without AMF in plant P concentration, photosynthetic characters and growth parameters in rehabilitated mining-disturbed soils.

 \checkmark It appeared that fertilizer P at 50 mg P kg⁻¹ in combination with AMF inoculation given the optimal association for maize growth in the rehabilitated soils of mining-disturbed

