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Introduction 

 Determine metal & C forms and particle-size distribution along transects from Udults to Aquods.  

 Evaluate implications for Aquod formation. 

 Consider implications for climate change effects on C flux in coastal plain soils. 

 

 

Objectives 

Methods 

 Soil samples collected by horizons using auger close to each well 

 5 or 6 wells 2 m deep installed along 4 transects from Udults to Aquods. 

  Pyrophosphate- oxalate-extractable Fe, & Al (Al(P) & Fe(P)) 

 Oxalate-extractable Fe, & Al (Al(AAO) & Fe(AAO)) 

  Pyrophosphate-extractable C (C(P)) and total C by flash combustion 

  Particle size by pipette method 

  pH and EC 

 

 

 

Reference 

 Fe depletion gradient along the hydrologic continuum corresponds to C-Al accumulation gradient 

(Bh horizon development). 

 

 Trends in distributions of Al, C, and Fe support H1 – that Fe inhibits podzolization in Florida soil 

parent materials.  

 

 Effects of (i) near-surface wetness on microbial processes influencing organic acid production  and 

(ii) vegetation type (sandhills vs. flatwoods) should also be investigated.   

Conclusions 

Pics. by Luke Gommerman 

 

Background:  

  Spodosols -  significant subsurface C pool; pertinent to global C dynamics 

  Spodosol formation in SE USA thought to involve organo-metal complexation 

  C mobilizes metals (“eluviation”) at shallower depths to form E horizons 

  Metals immobilize C at deeper depths (“illuviation”) to form Bh (“Spodic”) horizon  

 

Observations:  

  Southern Spodosols associated with fluctuating water tables (commonly Aquods; poorly drained) 

  Al >> Fe in Spodic of most southern Spodosols, but … 

  Fe can be significant in Spodic of northern Spodosols  

  Bh horizons become shallower and weaker as seasonal high water table deepens (Fig.1) 

 

Questions: 

  Why do water tables favor mobilization of Al, a non-redox-sensitive metal?  

 Why is Al-C association more prevalent than Fe-C in southern Bh horizons? 

 

Hypotheses:  

H1 -  Depletion of Fe resulting from wetness and chemical reduction leaves Al more vulnerable to 

organo-complexation and redistribution, fostering development of Aquods.  

H2 -  Near-surface saturation induces microbially-mitigated changes in organic acid activities and 

species that  promote metal complexation. (Not addressed in this poster). 

  

 

Figure 1. Left (L) – soil profiles of driest, intermediate, and wettest soil at transect 3. Right (R) – 

schematic of typical trends in water table and Bh along transitions. 
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  Soil profile distributions of Al & C show shift to greater 

depths as wetter part of landscape is approached (Fig : 2), 

corresponding to increasing  expression of E (Al loss) and 

Bh (Al & C gain).  

   

 Fe follows different trend – becoming depleted toward 

wetter part of landscape in transition from  Udults to 

Aquods (Fig: 3). Proportion of Fe also decreases with 

increasing depth of Bh (Fig. 4). 

 

 Al & C are strongly associated in Bh (Fig. 5) but Fe & C 

not significantly related. Pyrophosphate-extractable Al  

much higher in Bh than overlying A horizon, even for 

shallow, weakly expressed Bh (Fig. 5; Table 1). 

 

  (Al/C) or (C(p) /total-C) ratios are chemical indicators that 

can distinguish Bh from A  horizons (Fig.  5 & 6).  

 

 Depth of Bh is strongly related to saturation depth (Fig. 7). 

 

 C & Al appear jointly mobilized and immobilized, favoring 

chelate-complex theory over protoimogolite theory of 

podzolzation for these soils. 

 

 Landscape hydrologic gradient parallels gradients in Fe 

loss, C-Al association and subsurface C accumulation. 
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Figure 2:  Al(P)  & C(P) (x10 -1)  concentrations with depth for transect 1 profiles. Hydrologic gradient is from 1-1 (driest) to 1-6 (wettest). Other transects showed similar trends. 
 

Drawing from “Spodosols” in Handbook of Soil Science (Schaetzl and Harris, 2012) 
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y = 9.9562x + 104.13 

R² = 0.60; p < 0.0001 

Table 1: Comparisons  between Ap and weak Bh horizons  in driest side of  two transects of a site. 

Figure 3: Evidence for declining Fe in Bh with 

increasing moisture on landscape.  

y = 26.83x + 149.03 

R² = 0.14; p > 0.1 

Schaetzl, R., and W.G. Harris. 2011. Spodosols. p. 33-113 to 33-127. In: Handbook of Soil Science, 2nd ed. 

P.M. Huang, Y. Li and M.E. Sumner (eds.). CRC Press, New York.  

Transect # Well # Horizon Lower depth Color Al(P) Fe(P) C(P)

cm

3 1 Ap 5 10YR 4/1 8 2 306

Bh 17 10YR 4/2 19 4 149

3 Ap 11 10YR 4/1 4 1 110

Bh 30 10YR 4/3 21 4 170

4 1 Ap 16 10YR 4/1 6 2 149

Bh 30 10YR 4/4 25 6 128

3 Ap 18 10YR 4/1 3 1 308

Bh 30 10YR 4/3 18 3 288

<--------mmol kg 
-1 

---------->

Figure 5: Relations between pyrophosphate C & Al.  

Red = Ap; Blue = Bh . 

Figure 4: Evidence for declining Fe in Bh with 

increasing depth of  upper Bh.  

Figure 6: Relation between Pyrophosphate C and 

total C. Red = Ap; Blue = Bh.     are statistically 

found to be outliers, R2 with those      is 0.73. 

0

200

400

600

800

1000

1200

0 1000 2000 3000 4000 5000

C
(P

) 
m

m
o
l 

k
g

-

1
 

Total C mmol kg-

1 

y = 0.1343x + 50.319 

R² = 0.90; p < 0.0001 

y = 0.588x + 0.6791 
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Implications 

Figure 7 : Relation between  saturation depth and depth of Bh 

over a period of several month. 

UID: 72758  

 Redox sensitivity of Fe may be a hydrologic link explaining restriction of southern Spodosols 

primarily to poorly drained settings.  

 

 Direction and magnitude of C flux on coastal flatwoods landscapes can be influenced by 

hydrologically-linked organo-metal interactions. 

 

 Hence climatic alteration of water table dynamics could affect storage or release of C.  

 

 

 

Site 3: Flatwoods community with dense  

understory of saw palmettos (Serenoa repens). 

Site 3: Sandhill community with sparse understory  

and open canopy of longleaf pine (Pinus palustrus).  


