Diffusion limitation of methane oxidation in soils under long-term no-till

Prajaya Prajapati and Pierre-Andre Jacinthe

Department of Earth Sciences, Indiana University Purdue University Indianapolis (IUPUI)

Abstract

Adoption of no-till (NT) farming practices can improve the CH_4 oxidation capacity of croplands through creation of a favorable soil environment for methanotrophs, increased macroporosity and better soil gas transport. However, there is still limited data to evaluate the merit of that contention. In addition, even though the potential for biological CH₄ oxidation may exist in NT soils, restricted diffusion could limit expression of that potential in finetextured soils. Therefore, both the biological and physical components of CH₄ uptake must be determined. Using composite and intact cores from welldrained (MWD) and poorly-drained (PD) sites, a study was conducted to assess the CH₄ oxidation potential and gaseous diffusivity of soils under long-term (~50 y) NT and conventional plowing (CT). The NT soils exhibited higher maximum CH_4 oxidation (V_{max}) than CT. At the MWD site, the V_{max} of NT soil exceeded that of nearby forest soils. Compared to CT, CH_4 diffusion rate was on average 1.4 times higher in the NT soil. Results of this study will help address important questions regarding agricultural land management practices and climate change mitigation.

Methods

Location of study sites

Determination of Diffusion Coefficient

 Diffusion model for porous media proposed by Rolston et al. (1977) was used to calculate diffusion coefficient (D_s)

 $D_s = (KVL)/A$

A = area of soil core;
V = the volume of diffusion chamber;
L = the thickness of soil sample.

Table 1. Soil properties at the studysites

	Wooster			S. Charleston		
	СТ	NT	WL	СТ	NT	WL
Texture	silt Ioam	silt Ioam	silt Ioam	silt/clay loam	silt/clay loam	silt/clay loam
Bulk density (g/cm ³)	1.085	0.97	0.88	1.525	1.58	0.94
*Soil moisture(%)	17.3	22.4	18.4	16	23	24.3
рН	5.7	6.4	5.57	6.1	6.46	6.27
MBC (mg MBC Kg ⁻¹ soil)	309	768	644	206	384	729
Organic	14.1	22.0	24.5	22	30.0	71.2

Objectives

Soil Sampling

 Composite soil samples and intact soil cores were collected from CT, NT plots and woodlots at each site.

Fig 2. Intact soil core
for determination of
diffusion coefficientsFig 3. Composite soil
samples to assess CH4
oxidation potential

Fig 5. Diffusion apparatus Results Fig 6. CH₄ oxidation kinetics S. Charleston, PD

* At the time of soil sampling

Fig 8. CH₄ diffusivity (D_s) in soil in relation to tillage (S. Charleston)

Summary of Results

The NT soils showed higher methane oxidation capacity (V_{max}) than CT soils (V_{max} in NT similar to forest soils). Results suggest the occurrence of favorable soil conditions for methanotrophs under NT.

- To characterize the methane
 oxidation potential of NT soils in
 comparison to CT and natural
 forest.
- To assess the significance of diffusion restriction on CH₄ oxidation in NT soils.

Hypothesis

With absence of soil disturbance for a long period of time, it is hypothesized that a large and active population of methanotrophs will evolve, resulting in increased CH₄ oxidation.

Methane Oxidation Potential

- Field-moist and sieved (5 mm) soil samples were placed in Mason jar.
 - Addition of methane
 (3 to 250 µl CH₄ L⁻¹)
 to jar headspace. (5
 jars five level of CH₄).
 - Rates of CH₄ oxidation was monitored over a 5-6 day period.

Fig 4. Soil incubation vessel. Air samples were taken with a syringe, stored in glass vials and analyzed for CH_4 using gas chromatography (FID – flame ionization detector)

 Kinetic parameters were determined using Michaelis Menten model:
 v = (V_{max} [S])/(K_m + [S])

Wooster, MWD

Fig 7. Maximum CH₄ oxidation potential in relation to tillage

- This interpretation is corroborated by measurements of higher soil organic carbon, and microbial biomass carbon (MBC) under NT.
- Preliminary results also showed higher (1.4 times) values for diffusivity (Ds) in NT compared to CT soils. Additional experiments will be conducted to determine the significance of gaseous transport and soil drainage characteristics on CH₄ consumption in cultivated soils.

References

Bender, M., & Conrad, R. (1994). Methane oxidation

There will be increase in gaseous transport due to improved soil aggregation in NT compared to CT. Improvement in gas transport will be less significant in finetextured and poorly-drained soils.

v = rate of CH₄ oxidation,(μ g CH₄ kg⁻¹ h⁻¹) V_{max}= maximum rate of CH₄ oxidation K_m = half saturation constant (μ l CH₄ L⁻¹) [S] = initial CH₄ concentration (μ l CH₄ L⁻¹) activity in various soils and freshwater sediments: occurrence, characteristics, vertical profiles and distribution on grain size fractions. *Journal of Geophysical Resource, 99*, 16531-16540

Rolston, D. E., & Brown, B. D. (1977). Measurement of soil gaseous diffusion coefficients by a transient-state method with a time-dependent surface condition. Soil Science Society of America. Soil Science Society of America, 41, 499-505.

Acknowledgements

Funding: USDA-National Research Initiative (NRI) grant 2009-35112-05213.