

INTRODUCTION

Optimum use of nitrogen (N) is a key component in improving grain yield and quality in winter wheat (Triticum aestivum L.). The combined effect of other nutrients with N can have a positive impact on crop production. Use of sulfur (S) and chloride (Cl) with N is considered to be more effective in optimizing wheat grain yield and grain protein.

OBJECTIVE

To determine the benefits of foliar N application, before flowering, on winter wheat grain yields and to determine the synergistic effects of applying foliar N, S, and Cl on winter wheat grain yield.

MATERIALS AND METHODS

- Two sites: Lake Carl Blackwell (LCB) and Lahoma **(LAH)**.
- RCBD with 4 replications and 16 treatments.
- Treatments received preplant Urea Ammonium Nitrate (UAN) 0, 40, 80 kg N ha^{-1} .
- **UAN & NSURE were used as Foliar N source**
- ✤ 10 kg N ha⁻¹ and 20 kg N ha⁻¹ was applied at pre-flowering growth stage.
- Gypsum was used as the S source and applied at 6 kg S ha⁻¹.
- Half of each plot in rep 4 & treatment 16 in each rep received foliar Cl as CaCl₂ at 10 kg Cl ha⁻¹.
- Grain yield and grain protein concentration (GPC) were determined for each treatment.
- Data was analyzed using non- orthogonal Contrasts

CO₂ Backpack Sprayer for foliar Application

INFLUENCE OF FOLIAR SULFUR, CHLORIDE AND NITROGEN ON WINTER WHEAT GRAIN YIELD AND QUALITY

S. Dhital¹, B. Chim², J. Mullock¹, and W. Raun¹. ¹Department of Plant and Soil Sciences, Oklahoma State University ²Department of Crop, Soil and Environmental Sciences, Virginia Tech

RESULTS

Table 1: Treatment means for grain yield and grain N, Lake Carl Blackwell, OK, 2012

Trt	Prenlant	Foliar N	Foliar N	Foliar S kø	Yield	Grain N
	N kg ha ⁻¹	Source	kg ha ⁻¹	ha ⁻¹	kg ha ⁻¹	mg kg ⁻¹
1	0	Check	0		1700	144
2	40	Check	0		2797	154
3	40	UAN	10		2351	165
4	40	UAN	10	6	2815	166
5	40	NSURE	10		2304	171
6	40	UAN	20		2327	174
7	40	UAN	20	6	3192	175
8	40	NSURE	20		2903	166
9	80	Check	0		2044	182
10	80	UAN	0		2804	158
11	80	UAN	10	6	2641	174
12	80	NSURE	10		2684	174
13	80	UAN	10		2760	171
14	80	UAN	20	6	2345	186
15	80	NSURE	20		2288	169
16	80	NSURE	20	6	2945	177
				CV, %	15	6
				SED	131	4

Mean yield and grain protein increased with preplant linear N rate at both locations.

Yield was higher at Lake Carl Blackwell and grain protein was higher at Lahoma Grain yield inversely correlated with grain protein

Grain yield and grain protein increased with the application of preplant N and Foliar N

and LAH

CONCLUSIONS

- locations
- Chloride increased yield at Lahoma
- N+S increased yield at both locations

Treatment vs. Control and preplant linear N contrasts were significantly different for both