

Phenotypic Response of Corn Hybrids and Maturity Groups to Plant Populations

Alexander Lindsey¹, Giovana Cruppe², Peter Thomison¹, Allen Geyer¹, and Richard Minyo¹

¹Department of Horticulture and Crop Science, The Ohio State University; ²College of Agricultural Sciences, Sao Paulo State University Botucatu

Introduction

- Grain yield potential of corn hybrids has increased over the last 50 years due to improvements in breeding techniques and hybrid development
- Growers are increasing plant populations to maximize corn grain yield per hectare
- Information on the effects of high plant populations and hybrid maturity on secondary plant characteristics is limited
- Increasing plant populations may affect ear height, plant height and ear orientation differently by maturity group

Objectives

- Investigate plant population effects on ear and plant height and ear orientation for different maturity groups
- Determine relative maturity and plant population influences on corn grain yield and grain moisture

Materials and Methods

- Field study conducted in 2010 and 2011
 - 2010: S. Charleston and Hoytville, OH
 - 2011: S. Charleston, Hoytville, and Wooster, OH
- 8 m x 3.1 m plots, 4 rows at 0.76 m spacing, 3 replications per site
- Planted at five target populations
 - 44,000, 59,000, 74,000, 89,000, and 104,000 plants ha⁻¹ in 2010
 - 44,000, 64,000, 84,000, 104,000, and 124,000 plants ha⁻¹ in 2011
- Fifteen Pioneer brand hybrids examined with maturities from 102-114 day (Table 1) • Five early-maturing hybrids (102-106)
 - Ten late-maturing hybrids (108-114)
- Measured plant growth parameters at R6
 - Ear and plant height
- Ear orientation (percent erect ears)
- Measured grain yield and moisture at
- harvest

Statistics

- Split-plot randomized complete block
 - Whole plot: Population
 - Sub-plot: Hybrid
- Averaged across sites because the interaction was not significant ($\alpha = 0.05$)
- Data analyzed using contrasts in SAS 9.2
- Years are presented separately because weather was variable

Acknowledgements

We thank Pioneer Hi-Bred, a DuPont Co., for their support.

Matur Group

Early-Maturi Hybrid

Late-Matur Hybrid

Plant Population (plants ha⁻¹)

Early-Maturing Hybrid Yield Late-Maturing Hybrid Yield Early-Maturing Hybrid Moisture *Lowercase letters denote differences within a maturity group, and uppercase letters denote differences between maturity groups. [†]Late-maturing hybrid moisture was greater than early-maturing hybrid moisture at all populations in both years.

Figure 2. Ear and Plant Height by Maturity Group^{*}

NS

74,000

Early-Maturing Hybrid Plant Height Late-Maturing Hybrid Plant Height Early-Maturing Hybrid Ear Height Late-Maturing Hybrid Ear Height *Lowercase letters denote differences within a maturity group, and uppercase letters denote differences between maturity groups. •Optimum yield varied by year and maturity group (Figure 1) • Grain moisture was greater in late-maturing hybrids in both years (Figure 1)

1. Hybrids and relative maturity used in each year.							
	201	0	2011				
ity	Hybrid	Relative Maturity	Hybrid	Relative Maturity			
ing Is	P0377XR	103	P0210HR	102			
	P0413XR	104	P0413AM1	104			
	P0448XR	104	P0448AM1	104			
	P0463XR	104	35F48AM1	105			
	P0518XR	105	35K09AM1	106			
ing Is	P0891XR	108	P0832AM1	108			
	P0902XR	109	P0891AM1	108			
	P0916XR	109	P0912HR	109			
	P1011XR	110	P0965AM1	109			
	P1018XR	110	P1018AM1	110			
	P1162XR	111	P1184AM1	111			
	P1184XR	111	P1292AM1	112			
	P1253XR	112	P1360HR	113			
	P1314XR	113	P1395XR	113			
	P1395XR	113	P1498HR	114			

- years (Figure 2)

Table 2. Ear orientation as affected by plant population.							
	Early Hybrids	Late Hybrids	P-value	• P			
<u>2010</u>	——% Erec		•				
44,000	94 a	89 a	0.185	r			
74,000	86 a	80 b	0.106	۲ • (
104,000	69 b	69 c	0.938				
<u>2011</u>							
44,000	41 a	47 a	0.375	• Y			
84,000	24 b	34 b	0.155	C			
124,000	20 b	23 b	0.739	C			

Results and Discussion

Plant Population (plants ha⁻¹)

44,000

84,000 **Plant Population (plants ha⁻¹)**

• Percent erect ears decreased at populations >84,000 plants ha⁻¹ (Table 2) • Ear height was similar between maturity groups in 2010, but was greater at lower populations for late-maturing hybrids (Figure 2)

•The high population raised ear height for early-maturing hybrids and decreased plant height of late-maturing hybrids in 2011 (Figure 2)

• Plant height was greater for late-maturing hybrids across populations in both

Conclusions

- Plant population can affect plant height
- ncreasing plant density can decrease the percent erect ears
- Optimum population for maximum yield is variable by year
- Yield advantage of late-maturing hybrids over early-maturing hybrids is less consistent at high populations (2011)