Effect of soil type on soil water content and carbon cycle in different type of tropical forests using process based model in Thailand, Southeast Asia

Minaco Adachi (1), Akihiko Ito (1), Takahisa Maeda (2), Atsushi Ishida (3), Phanumard Ladpala (4), Somreong Panuthai (4), Taksin Artchawakom (5) (1) National Institute for Environmental Studies, Japan, (2) National Institute of Advanced Industrial Science and Technology, Japan, (3) Kyoto University, Japan, (4) Department for National Park, Wildlife and Plant Conservation, Thailand, (5) Sakaerat Environmental Research Station, TISTR

Objective

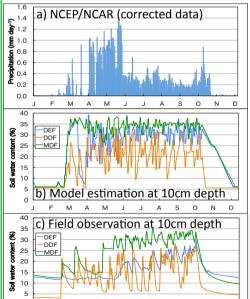
Seasonal variation in soil water content would be effect on the carbon cycle in tropical forest. A process-based terrestrial biogeochemical model (VISIT model) was applied to tropical primary forests of three types: seasonal dry evergreen forest (DEF), dry deciduous forest (DEF) and mixed deciduous forest (MDF) in Thailand. We evaluated the importance of soil water content on the carbon budget of tropical ecosystems.

Conclusion

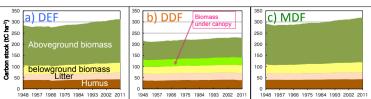
VISIT model was applied to tropical primary forests of three types: DEF, DDF and MDF.

- 1) Carbon stocks in DDF were lower than other sites, and deciduous event in dry season was very important factor to carbon stock and LAI.
- 2) SWC at field data was lower than that at the estimation in DEF site, but aboveground biomass in field data was higher than the estimation.
- 3) We need to investigate the relationship between soil characters and SWC, SWC and NEP or GPP, especially under the low SWC condition.

Almospheric CO2 NEP Pexchange NPP GPP Incredial sum locat Understory plant Last Sum Root Understory plant Litter C Litter C Interport Litter C Multiposition L Litter C Analysis Sum Root Analysis Sum Root Litter C Analysis Sum Root Analysi


Fig.1 An overview of the VISIT model.

Study site


VISIT model

VISIT model: A process-based terrestrial biogeochemical model (Vegetation Integrative SImulator for Trace gases) to evaluate the atmosphere— ecosystem exchange and internal dynamics of carbon at a daily time step.

Soil water content was estimated using bucket model which decided soil water flow by soil character. And, DDF had deciduous event in dry season in this model. Other parameters were same among three forests.

M A M J

S O N D

J A

Results and discussion

Although estimation of soil water content (SWC) remain a matter of improvement, especially in DEF, VISIT model could estimate the difference of soil water content in the three sites (Fig.3b).

Carbon stocks in DDF site was lower than other sites because of deciduous event in dry season. LAI (leaf area index) of canopy tree in DDF site was estimated about 1.9, it was also lower than other sites (5.1-5.3). In the results of VISIT model, the biomass under canopy was increased in DDF site due to low LAI of canopy tree (Fig. 4b). SWC at field data was lower than that at the estimation in DEF site (Fig.3), but aboveground biomass in field data was higher than the estimation (Table 2). Therefore, we need to investigate the relationship between SWC and NEP or GPP.

Fig.3 a) precipitation by NCEP/NCAR, b) soil water contents which were estimated by VISIT model, and c) soil water contents by field observation.

Table 2. Comparison of aboveground biomass between field data and VISIT model.

	Field data	VISIT model	Year
DEF	226.31)	183.6	1993
DDF	45.6 ²⁾	86.4	2009

1) Kanzaki et al. (2009), 2) Ladpala et al. (2009) Fig.4 Carbon stocks (t C ha⁻¹) in a) DEF, b) DDF, and c) MDF.

Table1. Soil characters at the three sites

Vegetation type	DEF	DDF	MDF
Bulk density	0.994)	1.154)	1.004)
Sand (%)	61.2 1)	67.2 ²⁾	48.9 ³⁾
Clay (%)	24.9 1)	17.4 ²⁾	11.6 ³⁾
Solid ratio (%)	39 4)	44 4)	40 4)
Soil type	4	2	3

- 1) Yamashita et al., (2010), 2) Sakurai et al. (1999),
- 3) Takahashi et al. (2011), 4) the present study

DEF MDF

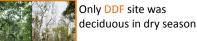


Fig.2 Site description in this study.