

SIX YEARS OF TILLAGE INFLUENCED SOIL CARBON FRACTIONS WITHIN CORN-SUGARBEET-SOYBEAN ROTATION IN SILTY CLAY SOIL OF NORTH DAKOTA

R. Awale, A. Chatterjee, and D. Franzen

Department of Soil Science, North Dakota State University, Fargo, North Dakota

INTRODUCTION

- In high clay soils, conservation tillage and N management may play crucial role in maintaining soil health.
- Different SOC fractions can provide early and sensitive indications on changes in SOC dynamics.

OBJECTIVES

Properties

BD

SOC

MBC

 \mathbf{C}_{\min}

CPOM-C

KMnO₄-C

|HC1

Texture

- To determine the effect of tillage practices on SOC and its fractions within corn-sugarbeet-soybean cropping system.
- To determine the relationships among different SOC fractions.
- To determine the effect of N application on SOC fractions.

MATERIALS AND METHODS

Table 1: Experimental Sites (2011)

Table 1. Expe		·)	
	Expt. 1 (Sugarbeet)	Expt. 2 (Soybean)	Expt. 3 (Corn)
Crop Rotations	S-C-SB-S-C-SB	C-SB-S-C- SB-S	C-SB-S-C
Expt. design	Split plot	RCBD	Split plot
Main plot	 N (100 lb/acre) timing: Full-N at preplant Half-N early and half-N at V6 Full N at V6 	Tillage:	N (150 lb/acre) timing: Full-N at preplant Full-N at V5-V6
Sub plot	Tillage: CT, NT,ST	None	Tillage: CT, NT, ST

Methods

Chloroform fumigation and extracting the samples with 0.5 M K₂SO₄

The absorbance of aliquot, obtained after reacting 5g soil with 0.02 M

Soils incubated (50% WHC) with alkali traps (0.5 M NaOH) at 25°C

KMnO₄ for 2 mins, was measured spectrophotometrically at 550 nm

Burning coarse soil fraction (>53µm)-obtained after dispersing soil

pH/Conductivity meter at 1:2.5 (w:v) soil to water ratio

Dry combustion at 1000 °C in Carbon Analyzer

Gravimetric water content determined at 105°C for 24 hrs

with 5 g L⁻¹ NaHMP- in Muffle furnace at 550°C for 4 hrs

Hydrometer method by dispersing 40 g soil with 5 % NaHMP

- The soils are classified as Fine, smectitic, frigid Typic Epiaquerts.
- Sites are maintained under same tillage managements since 2005.

Table 2: Laboratory Analyses of Soil Samples

RESULTS

Table 3: Surface (0-15 cm) Soil Characteristics of Expt. Sites								
Expts.	pН	EC (ds m ⁻¹)	BD (g cm ⁻³)	Sand (g Kg ⁻¹)	Silt (g Kg ⁻¹)	Clay (g Kg ⁻¹)		
Corn	7.58	0.26	1.18	26	458	516		
Sugarbaat	7 66	0.11	1 1 1 1	21	167	512		

Sugarbeet	7.66	0.11	1.14	21	467	513
Soybean	7.96	0.17	1.12	23	477	500

Table 5: Treatment Effects on Soil Properties in Corn

Variables	SOC (g Kg ⁻¹)	MBC (µg g-1)	CPOM-C (g Kg ⁻¹)	KMnO ₄ -C (mg Kg ⁻¹)	C _{min} (mg Kg ⁻¹)
N Timing	NS	NS	NS	NS	NS
Tillage	NS	NS	*	NS	NS
N Timing x Tillage	NS	NS	NS	NS	*

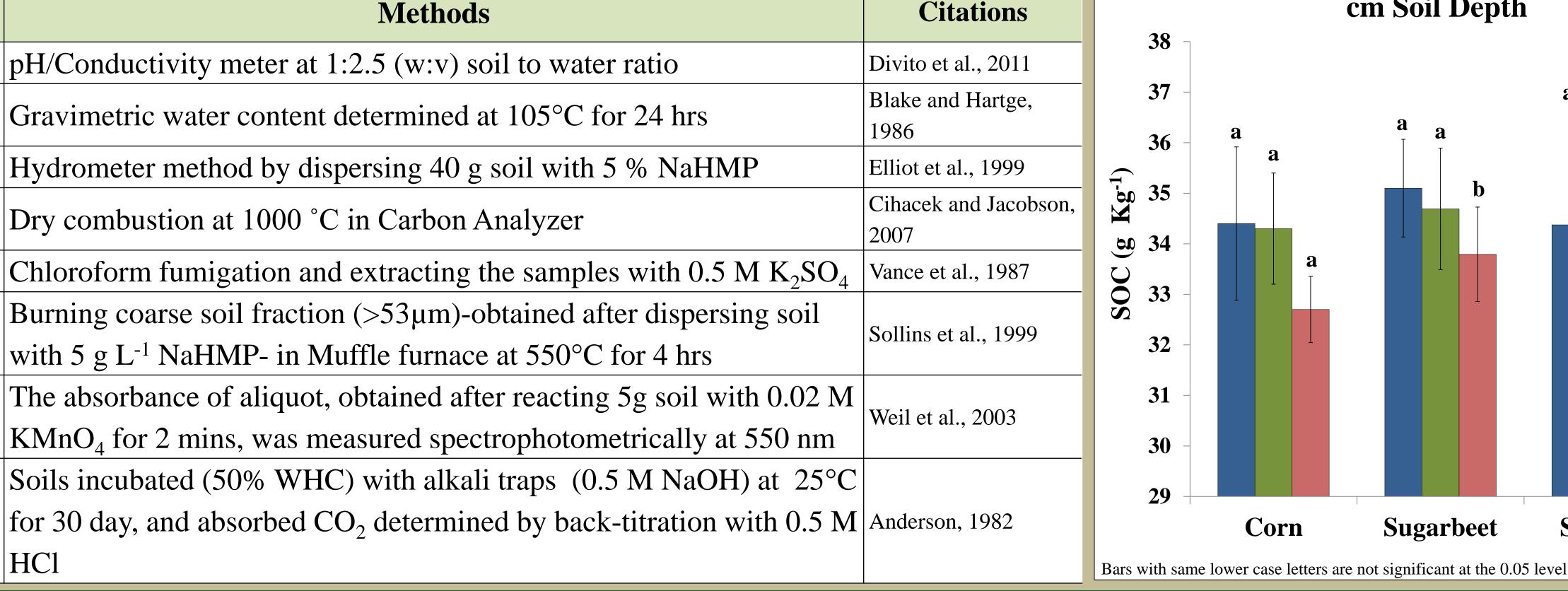
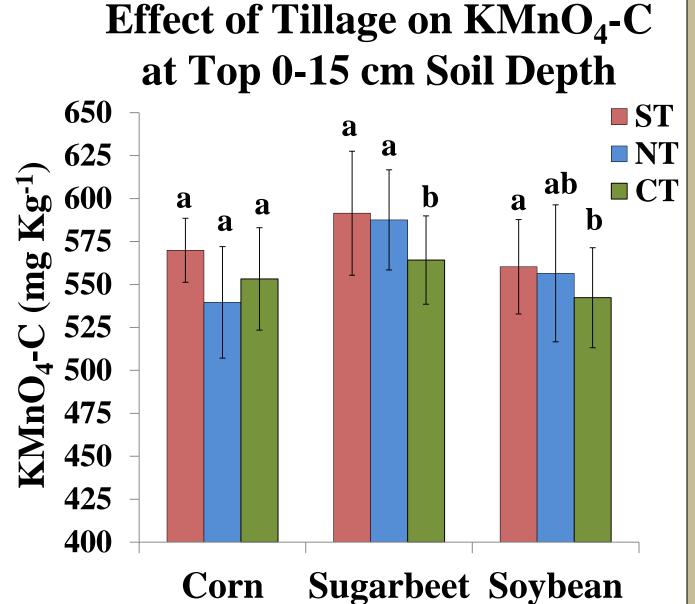
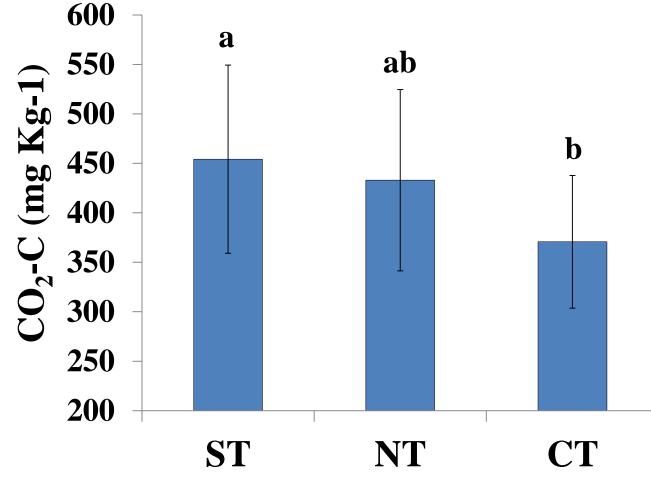

*Significant at 0.10 level, NS: not significant

Table 4: Treatment Effects on Soil Properties in Sugarbeet

Variables	SOC (g Kg ⁻¹)		CPOM-C (g Kg ⁻¹)	KMnO ₄ -C (mg Kg ⁻¹)	C _{min} (mg Kg ⁻¹)
N Timing	*	**	NS	NS	NS
Tillage	**	NS	**	**	NS
N Timing x Tillage	NS	NS	NS	NS	NS

*Significant at 0.10 level, **Significant at 0.05 level, NS: not significant


38 37



Effect of Tillage on CPOM-C at Top 0-15 cm Soil Depth Corn Sugarbeet Soybean

Bars with same lower case letters are not significant at the 0.05 level

30 Days Cumulative C_{min} in Soybeans as Related to Tillage

Table 6: Pearson Correlation Coefficients Corn, N = 18SOC MBC CPOM KMnO₄-C C_{min} **Variables** 0.47 0.75 NS 0.58 SOC 0.47 0.82 **MBC** NS NS 0.75 NS NS 0.44 **CPOM** KMnO₄-C NS NS NS 0.58 0.82NS 0.44

Values are significant at the 0.05 level, NS: not significant

Table 7: Pearson Correlation Coefficients Sugarbeet, N = 36

bugarbeet, 11 – 50								
Variables	SOC	MBC	CPOM	KMnO ₄ -C	C _{min}			
SOC		NS	0.48	NS	0.34			
MBC	NS		NS	NS	NS			
CPOM	0.48	NS		NS	0.37			
KMnO ₄ -C	NS	NS	NS		NS			
Cmin	0.34	NS	0.37	NS				

Values are significant at the 0.05 level, NS: not significant

Table 8: Pearson Correlation Coefficients Soybean, N = 36

Variables	SOC	MBC	CPOM	KMnO ₄ -C	C _{min}
SOC		NS	0.36	NS	0.45
MBC	NS		NS	NS	NS
CPOM	0.36	NS		0.32	0.69
KMnO ₄ -C	NS	NS	0.32		NS
C _{min}	0.45	NS	0.69	NS	

Values are significant at the 0.05 level, NS: not significant

CONCLUSIONS

- Conservation tillage (NT and ST) significantly increased SOC, CPOM-C, KMnO₄-C, and C_{\min} than CT.
- Significant positive correlations were found among SOC, CPOM-C and C_{\min} .
- CPOM-C and C_{min} are significant indicators of tillage effect on SOC change in silty clay soils.
- N timing did not have any significant (p<0.05) influence on SOC and its fractions, except MBC in Sugarbeet (Experiment1).

Acknowledgements: Authors are thankful to Norman Cattanach, Nathan Derby, Kevin Horsager, and Patrick Corrigan for their sincere support to lab analyses and field operations.