Poster Number 724
See more from this Division: A08 Integrated Agricultural SystemsSee more from this Session: General Integrated Agricultural Systems: I
Tuesday, November 2, 2010
Long Beach Convention Center, Exhibit Hall BC, Lower Level
Crop yield variability is due to a variety of factors including many manageable variables such as genetics, weeds and pests, drainage, irrigation, and nutrient supply, but many factors cannot be managed and/or they have un-manageable interactions with climate. Therefore climate and it’s interactions with plant, soil and landscape properties are the primary unknowns that producers face, and are significant causes of yield risk. Until the advent of precision agriculture, most field or plot experiments designed to understand these spatial-temporal interactions take a plot, or single field measurement approach. Even after yield monitors have become common, many studies rely on the yield data from one or a few fields. The collection of yield-monitor data from farmers over large geographical regions into large data warehouses offers a new avenue to explore these relationships. Our strategy is to use the multi-temporal and spatial replication of crop yield monitor data to empirically quantify production risks due to soil and landscape factors. The general approach we follow is to collect yield data, collect soil and landscape data (continuous and full coverage), merge these two, then model yield and yield variance with data mining techniques. Using the full coverage soil landscape data layers we apply the model throughout the study area. We have collected a large database of corn and soybean yield monitor data (>50,000 acre years and 900 field years) and a large set of soil-landscape data both at high resolution (10 m). Our aim is to produce regional coverage maps of mean yield and yield variance for Northeast Missouri.
See more from this Division: A08 Integrated Agricultural SystemsSee more from this Session: General Integrated Agricultural Systems: I