/AnMtgsAbsts2009.55772 Coupled Modeling of Hydrologic and Geochemical Fluxes for Prediction of Solid Phase Evolution in the B2 Hillslope Experiment.

Monday, November 2, 2009
Convention Center, Exhibit Hall BC, Second Floor

Katerina Dontsova, University of Arizona, Biosphere 2, Tucson, AZ, Carl Steefel, Earth Sciences Division, Lawrence Berkeley Natl. Lab., Berkeley, CA, Sharon Desilets, Department of Hydrology and Water Resources, Univ. of Arizona, Tucson, AZ, USA, AZ, Aaron Thompson, Crop and Soil Sciences, Univ. of Georgia, Athens, GA and Jon Chorover, 429 Shantz Bldg. 38, Univ. of Arizona, Tucson, AZ
Poster Presentation
  • ASA 2009-9.pdf (787.0 kB)
  • Abstract:
    A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment.  The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope.  Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow07, which was then used to model mineral weathering coupled to reactive solute transport.  Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software.  We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope.  Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution.  Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which in turn are predicted to feedback to affect hillslope hydraulic conductivities.