See more from this Session: Poster Session
Monday, June 27, 2011
Soil salinity is a major constraint to growth of turf and forage grass leading to leaf chlorosis, root damage and poor drought resistance. Improved salt tolerance of grass is desirable in that it allows the use of alternative water sources on urban landscapes and golf courses. Many physiological and biochemical factors are involved in salt tolerance, including plant hormones. Particularly, ethylene production in plant tissues increases in response to various environmental stresses, including high salinity. We hypothesize that inhibition of ethylene synthesis may alleviate salt injury and delay leaf senescence of grass. Cobalt Chloride can prevent the conversion of 1-aminocyclo-propane-1 carboxylic acid to ethylene in its biosynthetic pathway. We applied cobalt chloride to tall fescue (Festuca Arundenacea) grass subjected to various levels of salinity. Measurements of germination, growth, and chlorophyll content were taken to quantify the treatment effects. The results indicate that tall fescue receiving cobalt chloride withstood moderate salt conditions as well as mild drought stress.