67-3 Nitrate, Ammonium, and Phosphate Fluxes to Subsurface Drains In the Eastern Cornbelt: N Source and Rotation

Poster Number 24

See more from this Division: Joint Sessions
See more from this Session: Subsurface Fate and Transport of Agricultural Contaminants (Posters)

Tuesday, 7 October 2008
George R. Brown Convention Center, Exhibit Hall E

Guillermo Hernandez1, Sylvie Brouder2, Matthew Ruark3 and Ronald Turco2, (1)USDA-ARS National Soil Tilth Laboratory, Ames, IA
(2)Agronomy, Purdue University, West Lafayette, IN
(3)Plant Sciences Department, University of CA, Davis, Davis, CA
Abstract:
Subsurface drainage systems in cropland create pathways for nutrient and contaminant movement into surface water, but the relative contribution of diverse cropping practices to the nitrate (NO3-), ammonium (NH4+), and orthophosphate (PO43-) fluxes is still not well documented. This study was conducted to assess management effects on nutrient mass fluxes. From 1998 through 2006, we monitored flow, NO3-, NH4+, and PO43- in drainage water from lysimeter plots (216 m2) planted to corn cropped continuously (CC) or in rotation with soybean (CS), and fertilized with urea-ammonium nitrate (UAN), or with liquid swine manure injected in spring (SM) or fall (FM). Soybean (SC) in rotation with CS and restored prairie grass (PG) were also included. Across years, corn yields in CS and SC with UAN averaged 9648 and 9201 kg ha-1 respectively; the difference was significant in some years. SM and FM reduced mean yields to 8629 and 8429 kg ha-1, respectively. Soils receiving UAN averaged roughly 8-fold greater NO3- fluxes than PG (19.9 vs. 2.5 kg N ha-1 yr-1); losses from CC, CS and SC were relatively similar. Nitrate fluxes from CCFM were both substantially higher (33.3 kg N ha-1 yr-1) and more variable (17 to 48 kg ha-1 yr-1) than all other treatments including CCSM (mean loss 18.7 kg ha-1 yr-1). This pronounced timing effect reflects the abundant drainage events that occur during the fallow period. Major, discrete snow melt and rainfall events also appeared to control magnitude of daily fluxes for all three nutrients. With respect to NH4+ and PO43-, only manured soils recorded high but episodic/pulse fluxes in certain hydrological years. Compared to the average of all other treatments, CCFM raised PO43- flux (23 vs. 441 g P ha-1 yr-1), while CCSM resulted in higher NH4+ flux (217 vs. 680 g P ha-1 yr-1).

See more from this Division: Joint Sessions
See more from this Session: Subsurface Fate and Transport of Agricultural Contaminants (Posters)