See more from this Division: S01 Soil Physics
See more from this Session: Soil Moisture: Advances in Design and Development of Water Content, Matric Potential, and Flux Measurement Methods for the Critical Zone: I
Tuesday, 7 October 2008: 9:30 AM
George R. Brown Convention Center, 362F
Abstract:
Soil moisture sensors generally strive to use the real permittivity as the basis for estimating soil water content from measured electrical properties of soil. It has been shown that a reasonably good general calibration can be developed for mineral soils on this basis. However, at the low measurement frequencies used by commercial sensors, there is considerable variability among soils. It has also been shown that, in general, inter-soil variability is related to the magnitude of the imaginary component. Thus, the overall calibration relationship could be improved if the imaginary component were incorporated. The problem has been that the imaginary component is highly temperature sensitive. We measured the real and imaginary components for different soils over a range of temperatures to investigate the possibility of improving calibration precision. We found that a general, a temperature corrected imaginary component could be established independent of water content. Given this, we were able to demonstrate a considerable calibration precision improvement over the general equation. We then demonstrated the use of this approach with field data.
See more from this Division: S01 Soil Physics
See more from this Session: Soil Moisture: Advances in Design and Development of Water Content, Matric Potential, and Flux Measurement Methods for the Critical Zone: I