See more from this Division: S04 Soil Fertility & Plant Nutrition
See more from this Session: Tools for Improving Nitrogen Management
Abstract:
Binary logistic models were developed to spatially predict the probability of NK fertilizer application classes in a date palm-arid region (20 000 ha) using soil salinity (ECe, dS/m), profile residual nitrate (NO3-Np, mg/kg), the soil-test values for soil surface Fes (mg/kg) and Mns (mg/kg), and the total applied quantity of irrigation water (Qiw, m3/tree). The NK fertilizer application classes were assigned based on a total of 67 field trials implemented at sites of wide range of soil fertility during two growing seasons. The experiments had the same design with 16 factorial combinations of N and K while P was kept constant with a total number of 200 date palms per field trial. The combination of n independent site-variables taken r at a time method was developed to estimate the target number of total regression degrees of freedom. Only six of the 24 site-variables (X) were found to be statistically significant in influencing the probability of NK responses. The probability of response (Y=1 means response and Y=0 no response) to the levels of N-application and major-N-application were expressed by the logistic models: Logit (Y=1|N= 0.5, 1, 2, or 4 |X) = 2.950 0.017 Qiw + 1.066 ECes + 0.5 Fes and logit (Y=1| N = 4 |X) = -1.583 0.132 NO3-Np + 0.785 ECep, respectively. The models for K-application and major-K-application were: logit (Y=1|K= 1, 2, or 4 |X) = 2.581 + 0.018 Qiw - 0.090 NO3-Np and logit (Y=1|K = 4|X) = 0.453 + 0.568 ECes 0.456 Mns, respectively. These logistic models were combined in a geographic information system (GIS) to derive soil NK fertilizer application class map using the data sets of the significant site-variables.
See more from this Division: S04 Soil Fertility & Plant Nutrition
See more from this Session: Tools for Improving Nitrogen Management