Upendra Sainju1, Bharat Singh2, Wayne Whitehead2, and Shirley Wang2. (1) USDA-ARS-NPARL, 1500 N Central Ave., Sidney, MT 59270, (2) Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030
The influence of four cover crops (hairy vetch, rye, biculture of vetch and rye, and winter weeds)and three N fertilization rates (0, 60 to 65, and 120 to 130 kg N ha-1) was examined on plant C input from cover crops, cotton, and sorghum and soi organic C (SOC) in tilled and non-tilled soils in central GA. As plant C input varied by treatments and years, total input from 2000 to 2002 increased in cover crops compared to weeds and ranged from 6.8 to 22.8 Mg ha-1. The SOC at 0- to 10-cm fluctuated with C input from Oct. 1999 to Nov. 2002 and was greater in cover crops than in weeds in no-tilled soil. In contrast, SOC at 10- to 30-cm in no-tilled soil and at 0- to 60-cm in chisel-tilled soil declined gradually and was greater in biculture than in weeds. As a result, the biculture sequestered 267 compared with 33, -133, and -967 kg C ha-1 yr-1 at 0- to 30-cm in rye, vetch, and weeds, respectively, in no-tilled soil. In strip-tilled and chisel-tilled soils, SOC lost from 233 to 1233 kg C ha-1 yr-1. The SOC at 0- to 10- and 10- to 30-cm also increased in cover crops with 120 to 130 kg N ha-1 (9.1 to 11.8 and 14.0 to 17.1 kg C ha-1) than in weeds with 0 kg N ha-1 (8.0 to 10.6 and 12.4 to 14.0 kg C ha-1), regardless of tillage. In the subhumid region, cover crops and N fertilization can increase plant input C and C storage in tilled and non-tilled soils compared with no cover crop and N fertilization. Because of greater residue C, hairy vetch/rye biculture was more effective in sequestering C in no-tilled soil or reducing its decline in tilled soil than monocultures or weeds.
Handout (.pdf format, 469.0 kb)
Back to SOM, C Dynamics, and GHG Emissions: II
Back to S06 Soil & Water Management & Conservation
Back to The ASA-CSSA-SSSA International Annual Meetings (November 6-10, 2005)